Skip to main content
Log in

Martensite Enables the Formation of Complex Nanotwins in a Medium Mn Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanotwins with high density have been introduced by severe plastic deformation to improve the mechanical properties of single-phase steels. In this article, we revealed a pathway to generate intensive nanotwins in a dual-phase medium Mn steel. These nanotwins are developed by martensitic transformation during the quenching process and twinning-induced plasticity (TWIP) effect during subsequent uni-axial tension. The complex nanotwins with very high twin density will be promising for enhancing the mechanical performance of steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1. B B He, B Hu, H W Yen, G J Cheng, Z K Wang, H W Luo and M X Huang, Science 2017, vol. 357, pp. 1029-1032.

    CAS  Google Scholar 

  2. 2. O. Bouaziz, H. Zurob and M. Huang, Steel Res. Int. 2013, vol. 84, pp. 937-947.

    CAS  Google Scholar 

  3. 3. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang and H. Gao, Nat. Commun. 2014, vol. 5, pp. 3580-3587.

    Google Scholar 

  4. 4. T Bhattacharjee, IS Wani, S Sheikh, IT Clark, T Okawa, S Guo, Pinaki Prasad Bhattacharjee and N Tsuji, Scientific reports 2018, vol. 8, p. 3276.

    CAS  Google Scholar 

  5. 5.Lei Lu, Yongfeng Shen, Xianhua Chen, Lihua Qian and Ke Lu, Science 2004, vol. 304, pp. 422-26.

    Google Scholar 

  6. 6.Ke Lu, Lei Lu and S Suresh, Science 2009, vol. 324, pp. 349-352.

    Google Scholar 

  7. 7.L. Lu, Z. S. You and K. Lu, Scripta Mater. 2012, vol. 66, pp. 837-842.

    CAS  Google Scholar 

  8. 8.Olivier Bouaziz, David Barbier, Philippe Cugy and Gérard Petigand, Advanced Engineering Materials 2012, vol. 14, pp. 49-51.

    CAS  Google Scholar 

  9. 9.HT Wang, NR Tao and K Lu, Acta Mater. 2012, vol. 60, pp. 4027-4040.

    CAS  Google Scholar 

  10. 10.K Lu, FK Yan, HT Wang and NR Tao, Scripta Mater. 2012, vol. 66, pp. 878-883.

    CAS  Google Scholar 

  11. 11.FK Yan, NR Tao and K Lu, Scripta Mater. 2014, vol. 84, pp. 31-34.

    Google Scholar 

  12. 12.P. Zhou, Z. Y. Liang, R. D. Liu and M. X. Huang, Acta Mater. 2016, vol. 111, pp. 96-107.

    CAS  Google Scholar 

  13. 13.O Bouaziz, CP Scott and G Petitgand, Scripta Mater. 2009, vol. 60, pp. 714-716.

    CAS  Google Scholar 

  14. 14.O Bouaziz, S Allain and C Scott, Scripta Mater. 2008, vol. 58, pp. 484-487.

    CAS  Google Scholar 

  15. 15.O Bouaziz, Scripta Mater. 2012, vol. 66, pp. 982-985.

    CAS  Google Scholar 

  16. 16.I Gutierrez-Urrutia and D Raabe, Scripta Mater. 2012, vol. 66, pp. 992-996.

    CAS  Google Scholar 

  17. 17.Krystel Renard and PJ Jacques, Materials Science Engineering: A 2012, vol. 542, pp. 8-14.

    CAS  Google Scholar 

  18. 18.Y. T. Zhu, X. L. Wu, X. Z. Liao, J. Narayan, L. J. Kecskés and S. N. Mathaudhu, Acta Mater. 2011, vol. 59, pp. 812-21.

    CAS  Google Scholar 

  19. 19.Linli Zhu, Haihui Ruan, Xiaoyan Li, Ming Dao, Huajian Gao and Jian Lu, Acta Mater. 2011, vol. 59, pp. 5544-5557.

    CAS  Google Scholar 

  20. 20.Hao Wang, Zesheng You and Lei Lu, Materials Research Letters 2018, vol. 6, pp. 333-338.

    CAS  Google Scholar 

  21. 21.Linli Zhu, Shaoxing Qu, Xiang Guo and Jian Lu, J. Mech. Phys. Solids 2015, vol. 76, pp. 162-179.

    CAS  Google Scholar 

  22. Ligang Sun, Xiaoqiao He and Jian Lu, npj Comput. Mater. 2018, vol. 4, p. 6.

    Google Scholar 

  23. 23.Hongning Kou, Jian Lu and Ying Li, Advanced Materials 2014, vol. 26, pp. 5518-5524.

    CAS  Google Scholar 

  24. 24.NR Tao and K Lu, Scripta Mater. 2009, vol. 60, pp. 1039-1043.

    CAS  Google Scholar 

  25. 25.Xiaowei Liu, Ligang Sun, Linli Zhu, Jiabin Liu, K. Lu and Jian Lu, Acta Mater. 2018, vol. 149, pp. 397-406.

    CAS  Google Scholar 

  26. 26.Shen Qu, XH An, HJ Yang, CX Huang, Gang Yang, QS Zang, ZG Wang, SD Wu and ZF Zhang, Acta Mater. 2009, vol. 57, pp. 1586-1601.

    CAS  Google Scholar 

  27. L.E. Tanner, and M. Wuttig, Mater. Sci. Eng., A 1990, vol. 127, pp. 137-144.

    Google Scholar 

  28. 28.KW Andrews, J. Iron Steel Inst. Jpn. 1965, vol. 203, pp. 721-727.

    CAS  Google Scholar 

  29. B. Mintz, In Proceedings of the International Conference on TRIP-Aided High Strength Ferrous Alloys, Ghent, (2002), pp 379–382.

  30. 30.J Speer, DK Matlock, BC De Cooman and JG Schroth, Acta Mater. 2003, vol. 51, pp. 2611-2622.

    CAS  Google Scholar 

  31. 31.BB He and MX Huang, Metallurgical Materials Transactions A 2016, vol. 47, pp. 3346-3353.

    CAS  Google Scholar 

  32. 32.BB He, HW Luo and MX Huang, Int. J. Plast. 2016, vol. 78, pp. 173-186.

    CAS  Google Scholar 

  33. 33.A. García-Junceda, C. Capdevila, F. G. Caballero and C. García de Andrés, Scripta Mater. 2008, vol. 58, pp. 134-137.

    Google Scholar 

  34. 34.Farideh HajyAkbary, Jilt Sietsma, Roumen H Petrov, Goro Miyamoto, Tadashi Furuhara and Maria Jesus Santofimia, Scripta Mater. 2017, vol. 137, pp. 27-30.

    CAS  Google Scholar 

  35. 35.Benoit Krebs, Lionel Germain, Alain Hazotte and Mohamed Gouné, J. Mater. Sci. 2011, vol. 46, pp. 7026-038.

    CAS  Google Scholar 

  36. 36.Sangwon Lee, Jinkyung Kim, Seok-Jae Lee and Bruno C De Cooman, Scripta Mater. 2011, vol. 65, pp. 528-531.

    CAS  Google Scholar 

  37. 37.Lei Chen, Han-Soo Kim and Sung-Kyu Kim, ISIJ Int. 2007, vol. 47, pp. 1804-1812.

    CAS  Google Scholar 

  38. 38.G. Olson and M. Cohen, Metall. Mater. Trans. A 1975, vol. 6, pp. 791-795.

    Google Scholar 

  39. 40.E. Jimenez-Melero, N. H. van Dijk, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright and S. van der Zwaag, Scripta Mater. 2007, vol. 56, pp. 421-424.

    CAS  Google Scholar 

  40. 41.H.S. Yang and H. K. D. H. Bhadeshia, Scripta Mater. 2009, vol. 60, pp. 493-495.

    CAS  Google Scholar 

  41. 42.E. Jimenez-Melero, N. H. van Dijk, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright and S. van der Zwaag, Acta Mater. 2007, vol. 55, pp. 6713-6723.

    CAS  Google Scholar 

  42. S. Allain, J. P. Chateau, O. Bouaziz, S. Migot and N. Guelton, Mater. Sci. Eng., A 2004, vol. 387–389, pp. 158-162.

    Google Scholar 

  43. 44.Tae-Ho Lee, Eunjoo Shin, Chang-Seok Oh, Heon-Young Ha and Sung-Joon Kim, Acta Mater. 2010, vol. 58, pp. 3173-3186.

    CAS  Google Scholar 

  44. S. Lee and Bruno C De Cooman, Metall. Mater. Trans. A 2014, vol. 45, pp. 709-716.

    Google Scholar 

  45. 46.Binhan Sun, Fateh Fazeli, Colin Scott, Nicolas Brodusch, Raynald Gauvin and Stephen Yue, Acta Mater. 2018, vol. 148, pp. 249-262.

    CAS  Google Scholar 

  46. 47.Q. Meng, Y. Rong and T. Hsu, Metall. Mater. Trans. A 2006, vol. 37, pp. 1405-1411.

    Google Scholar 

  47. 48.H. K. D. H. Bhadeshia and R. Honeycombe: Steels: Microstructure and Properties. 3rd ed. (Butterworth-Heinemann, Oxford, U.K., 2006).

    Google Scholar 

  48. 49.G. W. Greenwood and R. H. Johnson, Proc. Roy. Soc. London A 1965, vol. 283, pp. 403-422.

    Google Scholar 

  49. 50.F. D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud and T. Antretter, Int. J. Plast. 2000, vol. 16, pp. 723-748.

    CAS  Google Scholar 

Download references

M.X. Huang acknowledges the financial support from the National Natural Science Foundation of China (Nos. U1764252, U1560204) and Research Grants Council of Hong Kong (Nos. 17255016, 17203014, C7025-16G, 17203014, C7025-16G). B.B. He acknowledges the financial support from National Young 1000-Talents Program (33/K19331102) and Start-up Funding from the Southern University of Science and Technology (33/Y01336122). B.B. He acknowledges the technical support from SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. X. Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on August 02, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B.B., Huang, M.X. Martensite Enables the Formation of Complex Nanotwins in a Medium Mn Steel. Metall Mater Trans A 51, 1960–1966 (2020). https://doi.org/10.1007/s11661-020-05683-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05683-7

Navigation