Skip to main content
Log in

Microstructure Evolution of Multicomponent γ′-Strengthened Co-Based Superalloy at 750 °C and 1000 °C with Different Al and Ti Contents

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three novel Co-30Ni-(7 − 1.5x)Al-2W-1.5Mo-1Ta-(3.5 + 0.7x)Ti-12Cr-0.1Hf-0.08C-0.08B-0.4Si-0.01Zr (x = 0, 1, 2 at. pct) γ′-strengthened wrought Co-based superalloys with varying concentrations of Al and Ti were investigated to clarify the effects of the Al and Ti concentration on the microstructural stability at 750 °C and 1000 °C. The results show that the 7Al-3.5Ti and 5.5Al-4.2Ti alloys maintain a γ/γ′ two-phase microstructure after aging at 1000 °C for 600 hours, but the 4Al-4.9Ti alloy forms a η(D024)-(Co,Ni)3Ti phase after aging at 1000 °C for 312 hours. There exist stacking faults in the γ′ phase adjacent to the D024 needles, which form during the aging process, and the growth of the η(D024) phase is controlled by the diffusion of W. The γ′ phase and η(D024)-(Co,Ni)3Ti phase exhibit the following OR: \( \left. {\left\langle { 1 1 {\bar{\text{2}}}0} \right\rangle \left\{ {000 1} \right\}\eta } \right\|\left\langle { 1 10} \right\rangle \left\{ { 1 1 1} \right\}\gamma \prime \). All the alloys possess good intermediate-temperature microstructural stability, with γ/γ′ two phases after aging at 750 °C for 1500 hours. With increasing Ti content and decreasing Al content, the coarsening rate of γ′ at 1000 °C first decreases and then increases; however, it gradually decreases at 750 °C. This difference in the coarsening behavior is attributed to the interaction of the interfacial energy, diffusion of the solute atoms and coherent stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida: Science, 2006, vol. 312, pp. 90-1.

    CAS  Google Scholar 

  2. T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, A. Suzuki: JOM, 2010, vol. 62, pp. 58-63.

    CAS  Google Scholar 

  3. M. Tsunekane, A. Suzuki, T.M. Pollock: Intermetallics, 2011, vol. 19, pp. 636-43.

    CAS  Google Scholar 

  4. K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida: Mater. Trans., 2008, vol. 49, pp. 1474-9.

    CAS  Google Scholar 

  5. F. Xue, H.J. Zhou, Q.Y. Shi, X.H. Chen, H. Chang, M.L Wang, Q. Feng: Scr. Mater., 2015, vol. 97, pp. 37-40.

    CAS  Google Scholar 

  6. G. Feng, H. Li, S.S. Li, J.B. Sha: Scr. Mater., 2012, vol. 67, pp. 499-502.

    CAS  Google Scholar 

  7. M. Ooshima, K. Tanaka, N.L. Okamoto, K. Kishida, H. Inui: J. Alloy. Compd., 2010, vol. 508, pp. 71-8.

    CAS  Google Scholar 

  8. F. Pyczak, A. Bauer, M. Göken, U. Lorenz, S. Neumeier, M. Oehring, J. Pual, N. Schell, A. Schreyer, A. Stark, F. Symanzik: J. Alloy. Compd., 2015, vol. 632, pp. 110-5.

    CAS  Google Scholar 

  9. L. Klein, A. Bauer, S. Neumeier, M. Göken, S. Virtanen: Corros. Sci., 2011, vol. 53, pp. 2027-34.

    CAS  Google Scholar 

  10. Li W, Li L, Antonov S, Feng Q.: Mater. Des., 2019, 180, pp. 107912.

    CAS  Google Scholar 

  11. S. Neumeier, L.P. Freund, M. Göken: Scr. Mater., 2015, vol. 109, pp. 104-7.

    CAS  Google Scholar 

  12. L.P. Freund, S. Giese, D. Schwimmer, H.W. Höppel, S. Neumeier, M. Göken: J. Mater. Res., 2017, vol. 32, pp. 1-8.

    Google Scholar 

  13. M. Knop, P. Mulvey, F. Ismail, A. Radecka, K.M. Rahman, T.C. Lindley, B.A. Shollock, M.C. Hardy, M.P. Moody, T.L. Martin, P.A.J. Bagot, D. Dye: JOM, 2014, vol. 66, pp. 2495-501.

    CAS  Google Scholar 

  14. Zhang Y, Fu HD, Zhou XZ, Zhang YH, Xie JX (2018) Mater. Sci. Eng. A 737:265-273.

    CAS  Google Scholar 

  15. C.H. Zenk, S. Neumeier, H.J. Stone, M. Göken: Intermetallics, 2014, vol. 55, pp. 28-39.

    CAS  Google Scholar 

  16. P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, D.N. Seidman: Mater. Sci. Eng. A, 2017, vol. 705, pp. 122-32.

    CAS  Google Scholar 

  17. Y.Z. Li, F. Pyczak, M. Oehring, L. Wang, J. Paul, U. Lorenz, Z.K. Yao: J. Alloy. Compd., 2017, vol. 729, pp. 266-76.

    CAS  Google Scholar 

  18. N. Volz, C.H. Zenk, R. Cherukuri, T. Kalfhaus, M. Weiser, S.K. Makineni, C. Betzing, M. Lenz, B. Gault, S.G. Fries, J. Schreuer, R. Vaßen, S. Virtanen, D. Raabe, E. Spiecker, S. Neumeier, M. Göken: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4099-109.

    Google Scholar 

  19. L.P. Freund, A. Stark, A. Kirchmayer, N. Schell, F. Pyczak, M. Göken, S. Neumeier: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4070-8.

    Google Scholar 

  20. Zhang Y, Fu HD, Zhou XZ, Zhang YH, Xie JX (2019) Intermetallics 112:106543.

    Google Scholar 

  21. C.J. Small, N. Saunders: MRS Bull., 1999, vol. 24, pp. 22-6.

    CAS  Google Scholar 

  22. E.A. Lass: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2443-59.

    Google Scholar 

  23. Yan H-Y, Coakley J, Vorontsov VA, Jones NG, Stone HJ, Dye D (2014) Mater. Sci. Eng. A, 613, 201-8.

    CAS  Google Scholar 

  24. W.F. Gale, T.C. Totemeier: Smithells Metals Reference Book (8th Edition), 2004, Amsterdam: Elsevier.

    Google Scholar 

  25. E.W. Ross, C.T. Sims: Superalloys II. A Wiley-Interscience Publication, New York, 1987, pp. 97-133.

    Google Scholar 

  26. I.M. Lifshitz, V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.

    Google Scholar 

  27. C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581-91.

    CAS  Google Scholar 

  28. A.J. Ardell, V. Ozolins: Nat. Mater., 2005, vol. 4, pp. 309-16.

    CAS  Google Scholar 

  29. J. Tiley, G.B. Viswanathan, R. Srinivasan, R. Banerjee, D.M. Dimiduk, H.L. Fraser: Acta Mater., 2009, vol. 57, pp. 2538-49.

    CAS  Google Scholar 

  30. M. Fährmann, E. Fährmann, T.M. Pollock, W.C. Johnson: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1943-5.

    Google Scholar 

  31. G.S Shin, J.Y. Yun, M.C. Park, S.J. Kim: Mater. Charact., 2014, vol. 95, pp. 180-6.

    CAS  Google Scholar 

  32. S. Meher, S. Nag, J Tiley, A. Goel, R. Banerjee: Acta Mater., 2013, vol. 61, pp. 4266-76.

    CAS  Google Scholar 

  33. S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, M. Göken: Acta Mater., 2016, vol. 106, pp. 304-12.

    CAS  Google Scholar 

  34. A.J. Ardell, R.B. Nicholson: J. Phy. Chem. Solids., 1966, vol. 27, pp. 1793-804.

    CAS  Google Scholar 

  35. T. Hara, S. Kobayashi, T. Ueno, K. Oikawa: J. Cryst. Growth, 2019, vol. 506, pp. 91-6.

    CAS  Google Scholar 

  36. E. Balikci, D. Erdeniz: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1391-8.

    CAS  Google Scholar 

  37. R.S. Moshtaghin, S. Asgari: Mater. Des., 2003, vol. 24, pp. 325-30.

    CAS  Google Scholar 

  38. C.Y. Cui, Y.F. Gu, D.H. Ping, H. Harada: Metall. Mater. Trans. A, 2009, vol. 40, pp. 282-91.

    CAS  Google Scholar 

  39. M. Kompatscher, B. Schönfeld, H. Heinrich, G. Kostorz: J. Appl. Cryst., 2000, vol. 33, pp. 488-91.

    CAS  Google Scholar 

  40. Mehrer H (ed) (1990) Diffusion in Solid Metals and Alloys, Landolt-börnstein New Series. Springer, Berlin

    Google Scholar 

  41. M.S. Titus, A. Mottura, G.B. Viswanathan, A. Suzuki, M.J. Mills, T.M. Pollock: Acta Mater., 2015, vol. 89, pp. 423-37.

    CAS  Google Scholar 

  42. T.M. Smith, B.S. Good, T.P. Gabb, B.D. Esser, A.J. Egan, L.J. Evans, D.W. McComb, M.J. Mills: Acta Mater., 2019, vol. 172, pp. 55-65.

    CAS  Google Scholar 

  43. T. Krol, D. Baither, E. Nembach: Acta Mater., 2004, vol. 52, pp. 2095–108.

    CAS  Google Scholar 

  44. A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, M. Göken: Mater. Sci. Eng. A, 2012, vol. 550, pp. 333-41.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of National Key R&D Program of China (Grant No. 2017YFB0702904) and Fundamental Research Funds for the Central Universities (Grant No. FRF-BD-17-017A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 27, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fu, H., Zhou, X. et al. Microstructure Evolution of Multicomponent γ′-Strengthened Co-Based Superalloy at 750 °C and 1000 °C with Different Al and Ti Contents. Metall Mater Trans A 51, 1755–1770 (2020). https://doi.org/10.1007/s11661-020-05652-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05652-0

Navigation