Skip to main content
Log in

Additive Manufacturing of Co-Ni-Ga High-Temperature Shape Memory Alloy: Processability and Phase Transformation Behavior

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Co-Ni-Ga high-temperature shape memory alloy is additively processed by selective laser melting for the first time. Reversible martensitic transformation of the as-built material is proven by differential scanning calorimetry. Microstructural analysis reveals a columnar-grained microstructure resulting from epitaxial solidification. Columnar-grained microstructures are characterized by a very low degree of constraints being beneficial for superior functional performance in numerous shape memory alloys. However, process-induced crack formation remains a challenge towards robust realization of adequate conditions showing good mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. K. Otsuka, C.M. Wayman: Shape memory materials. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  2. K. Otsuka, X. Ren: Prog. Mater Sci., 2005, vol. 50, pp. 511–678.

    CAS  Google Scholar 

  3. D.C. Lagoudas: Shape memory alloys. Springer, Boston, MA, 2008.

    Google Scholar 

  4. J. Ma, I. Karaman, R.D. Noebe: Int. Mater. Rev., 2013, vol. 55, pp. 257–315.

    Google Scholar 

  5. G.S. Firstov, J. van Humbeeck, Y.N. Koval: Mater. Sci. Eng. A, 2004, vol. 378, pp. 2–10.

    Google Scholar 

  6. H. Sehitoglu, L. Patriarca, Y. Wu: Curr. Opin. Solid State Mater. Sci., 2017, vol. 21, pp. 113–20.

    CAS  Google Scholar 

  7. H. Sehitoglu, Y. Wu, L. Patriarca: Scr. Mater., 2017, vol. 129, pp. 11–15.

    CAS  Google Scholar 

  8. M. Elahinia, N. ShayestehMoghaddam, A. Amerinatanzi, S. Saedi, G.P. Toker, H. Karaca, G.S. Bigelow, O. Benafan: Scr. Mater., 2018, vol. 145, pp. 90–94.

    CAS  Google Scholar 

  9. D. Biermann, F. Kahleyss, E. Krebs, T. Upmeier: J. of Materi Eng and Perform, 2011, vol. 20, pp. 745–51.

    CAS  Google Scholar 

  10. M.H. Wu: Mater. Sci. Forum, 2002, vol. 394-395, pp. 285–92.

    Google Scholar 

  11. K. Oikawa, T. Ota, F. Gejima, T. Ohmori, R. Kainuma, K. Ishida: Mater. Trans., 2001, vol. 42, pp. 2472–75.

    CAS  Google Scholar 

  12. A. Reul, C. Lauhoff, P. Krooß, M.J. Gutmann, P.M. Kadletz, Y.I. Chumlyakov, T. Niendorf, W.W. Schmahl: Shap. Mem. Superelasticity, 2018, vol. 4, pp. 61–69.

    Google Scholar 

  13. P. Krooß, T. Niendorf, P.M. Kadletz, C. Somsen, M.J. Gutmann, Y.I. Chumlyakov, W.W. Schmahl, G. Eggeler, H.J. Maier: Shap. Mem. Superelasticity, 2015, vol. 1, pp. 6–17.

    Google Scholar 

  14. J.A. Monroe, I. Karaman, H.E. Karaca, Y.I. Chumlyakov, H.J. Maier: Scr. Mater., 2010, vol. 62, pp. 368–71.

    CAS  Google Scholar 

  15. J. Dadda, H.J. Maier, I. Karaman, H.E. Karaca, Y.I. Chumlyakov: Scr. Mater., 2006, vol. 55, pp. 663–66.

    CAS  Google Scholar 

  16. T. Niendorf, P. Krooß, C. Somsen, G. Eggeler, Y.I. Chumlyakov, H.J. Maier: Acta Mater., 2015, vol. 89, pp. 298–304.

    CAS  Google Scholar 

  17. C. Lauhoff, P. Krooß, D. Langenkämper, C. Somsen, G. Eggeler, I. Kireeva, Y.I. Chumlyakov, T. Niendorf: Funct. Mater. Lett., 2018, vol. 11, art. no. 1850024.

    CAS  Google Scholar 

  18. E. Dogan, I. Karaman, Y.I. Chumlyakov, Z.P. Luo: Acta Mater., 2011, vol. 59, pp. 1168–83.

    CAS  Google Scholar 

  19. M. Vollmer, P. Krooß, C. Segel, A. Weidner, A. Paulsen, J. Frenzel, M. Schaper, G. Eggeler, H.J. Maier, T. Niendorf: J. Alloys Compd., 2015, vol. 633, pp. 288–95.

    CAS  Google Scholar 

  20. E. Karsten, G. Gerstein, O. Golovko, A. Dalinger, C. Lauhoff, P. Krooss, T. Niendorf, A. Samsonenko, H.J. Maier: Shap. Mem. Superelasticity, 2019, vol. 5, pp. 84–94.

    Google Scholar 

  21. T. Niendorf, C. Lauhoff, E. Karsten, G. Gerstein, A. Liehr, P. Krooß, H.J. Maier: Scr. Mater., 2019, vol. 162, pp. 127–31.

    CAS  Google Scholar 

  22. C. Lauhoff, M. Vollmer, P. Krooß, I. Kireeva, Y.I. Chumlyakov, T. Niendorf: Shap. Mem. Superelasticity, 2019, vol. 5, pp. 73–83.

    Google Scholar 

  23. R.D. Dar, H. Yan, Y. Chen: Scr. Mater., 2016, vol. 115, pp. 113–17.

    CAS  Google Scholar 

  24. Y. Sutou, T. Omori, R. Kainuma, K. Ishida: Acta Mater., 2013, vol. 61, pp. 3842–50.

    CAS  Google Scholar 

  25. S.M. Ueland, Y. Chen, C.A. Schuh: Adv. Funct. Mater., 2012, vol. 22, pp. 2094–99.

    CAS  Google Scholar 

  26. S.M. Ueland, C.A. Schuh: J. Appl. Phys., 2013, vol. 114, art. no. 053503.

    Google Scholar 

  27. J.-L. Liu, H.-Y. Huang, J.-X. Xie: Mater. Des, 2014, vol. 64, pp. 427–33.

    CAS  Google Scholar 

  28. J.-L. Liu, H.-Y. Huang, J.-X. Xie, S. Xu, F. Li: Scr. Mater., 2017, vol. 136, pp. 106–10.

    Google Scholar 

  29. T. Omori, M. Okano, R. Kainuma: APL Mater., 2013, vol. 1, art. no. 032103.

    Google Scholar 

  30. T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, R. Kainuma: Science, 2013, vol. 341, pp. 1500–02.

    CAS  Google Scholar 

  31. T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, R. Kainuma: Nat. Commun., 2017, vol. 8, pp. 354.

    Google Scholar 

  32. T. Omori, H. Iwaizako, R. Kainuma: Mater. Des, 2016, vol. 101, pp. 263–69.

    CAS  Google Scholar 

  33. M. Vollmer, T. Arold, M.J. Kriegel, V. Klemm, S. Degener, J. Freudenberger, T. Niendorf: Nat. Commun., 2019, vol. 10, art. no. 2337.

    CAS  Google Scholar 

  34. T. Niendorf, F. Brenne, M. Schaper, A. Riemer, S. Leuders, W. Reimche, D. Schwarze, H.J. Maier: Rapid Prototyp. J., 2016, vol. 22, pp. 630–35.

    Google Scholar 

  35. T. Niendorf, S. Leuders, A. Riemer, F. Brenne, T. Tröster, H.A. Richard, D. Schwarze: Adv. Eng. Mater., 2014, vol. 16, pp. 857–61.

    CAS  Google Scholar 

  36. L. Thijs, K. Kempen, J.-P. Kruth, J. van Humbeeck: Acta Mater., 2013, vol. 61, pp. 1809–19.

    CAS  Google Scholar 

  37. T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, D. Schwarze: Metall and Materi Trans B, 2013, vol. 44, pp. 794–96.

    Google Scholar 

  38. L. Thijs, M.L. MonteroSistiaga, R. Wauthle, Q. Xie, J.-P. Kruth, J. van Humbeeck: Acta Mater., 2013, vol. 61, pp. 4657–68.

    CAS  Google Scholar 

  39. F. Brenne, A. Taube, M. Pröbstle, S. Neumeier, D. Schwarze, M. Schaper, T. Niendorf: Prog. Addit. Manuf., 2016, vol. 1, pp. 141–51.

    Google Scholar 

  40. T. Simson, A. Emmel, A. Dwars, J. Böhm: Addit. Manuf., 2017, vol. 17, pp. 183–89.

    CAS  Google Scholar 

  41. M.F. Zaeh, G. Branner: Prod. Eng. Res. Devel., 2010, vol. 4, pp. 35–45.

    Google Scholar 

  42. A.-C. Dippel, H.-P. Liermann, J.T. Delitz, P. Walter, H. Schulte-Schrepping, O.H. Seeck, H. Franz: J. Synchrotron Radiat., 2015, vol. 22, pp. 675–87.

    CAS  Google Scholar 

  43. P.M. Kadletz, P. Krooß, Y.I. Chumlyakov, M.J. Gutmann, W.W. Schmahl, H.J. Maier, T. Niendorf: Mater. Lett., 2015, vol. 159, pp. 16–19.

    CAS  Google Scholar 

  44. J. Liu, M. Xia, Y. Huang, H. Zheng, J. Li: J. Alloys Compd., 2006, vol. 417, pp. 96–99.

    CAS  Google Scholar 

  45. M. Wuttig, J. Li, C. Craciunescu: Scr. Mater., 2001, vol. 44, pp. 2393–97.

    CAS  Google Scholar 

  46. L. Thijs, F. Verhaeghe, T. Craeghs, J. van Humbeeck, J.-P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303–12.

    CAS  Google Scholar 

  47. T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, M. de Wild: Mater. Charact., 2014, vol. 94, pp. 189–202.

    CAS  Google Scholar 

  48. P. Mercelis, J.‐P. Kruth: Rapid Prototyp. J., 2006, vol. 12, pp. 254–65.

    Google Scholar 

  49. J. Dadda, D. Canadinc, H.J. Maier, I. Karaman, H.E. Karaca, Y.I. Chumlyakov: Philos. Mag., 2007, vol. 87, pp. 2313–22.

    CAS  Google Scholar 

  50. B. Breidenstein, F. Brenne, L. Wu, T. Niendorf, B. Denkena: HTM J. Heat Treatm. Mat., 2018, vol. 73, pp. 173–86.

    Google Scholar 

  51. K. Oikawa, T. Ota, Y. Imano, T. Omori, R. Kainuma, K. Ishida: JPED, 2006, vol. 27, pp. 75–82.

    CAS  Google Scholar 

  52. M. Speirs, B. van Hooreweder, J. van Humbeeck, J.-P. Kruth: J. Mech. Behav. Biomed. Mater., 2017, vol. 70, pp. 53–59.

    CAS  Google Scholar 

Download references

Financial support by Deutsche Forschungsgemeinschaft (Project No. 250216343; NI1327/7-3) within the Emmy Noether-Program is gratefully acknowledged. DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, is thanked for the provision of experimental facilities at the photon beamline P02.1 and the support laboratory. The authors gratefully acknowledge the assistance of Christian Staab with the DSC experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lauhoff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 14, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauhoff, C., Fischer, A., Sobrero, C. et al. Additive Manufacturing of Co-Ni-Ga High-Temperature Shape Memory Alloy: Processability and Phase Transformation Behavior. Metall Mater Trans A 51, 1056–1061 (2020). https://doi.org/10.1007/s11661-019-05608-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05608-z

Navigation