Skip to main content
Log in

In Situ Electron Diffraction and Resistivity Characterization of Solid State Reaction Process in Cu/Al Bilayer Thin Films

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Solid state reaction processes in Cu/Al thin films have been studied using the methods of in situ electron diffraction and electrical resistivity measurements. The solid state reaction in the Cu/Al thin films has been found to begin already at 88 °C with the formation of the Al2Cu phase in the process of thermal heating in vacuum. The phase sequence at the solid state reaction in the films under study has been determined to be the following: Al2Cu → AlCu → Al4Cu9. A model has been suggested for describing the initial formation stage of intermetallic compounds at the solid state reaction in Cu/Al thin films. According to this model, at the initial stage, the intermetallic compounds are formed as separate crystallites at the interface in the Cu/Al thin films. The suggested model can be applied both to the formation of the first phase, Al2Cu, and to the subsequent phases: AlCu and Al4Cu9. For the Al4Cu9 phase the temperature coefficient of the electrical resistivity has been determined to be equal to \( \alpha_{{{\text{Al}}_{ 4} {\text{Cu}}_{ 9} }} \)= 1.1 × 10−3 K−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 1 D. Chu, J.-Y. Zhang, J.-J. Yao, Y.-Q. Han, C.-J. Wu: Trans. Nonferr. Metal. Soc. China, 2017, vol. 27, pp. 2521-2528. https://doi.org/10.1016/S1003-6326(17)60279-6

    Article  CAS  Google Scholar 

  2. 2 H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen: Scripta Mater., 2009, vol. 61, pp. 165-168. https://doi.org/10.1016/j.scriptamat.2009.03.034

    Article  CAS  Google Scholar 

  3. 3 C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou, H.H. Wang: Microelectron. Reliab., 2008, vol. 48, pp. 416-424. https://doi.org/10.1016/j.microrel.2007.06.008

    Article  CAS  Google Scholar 

  4. 4 A.I. Oliva, J.E. Corona, V. Sosa: Mater. Charact., 2010, vol. 61, pp. 696-702. https://doi.org/10.1016/j.matchar.2010.03.016

    Article  CAS  Google Scholar 

  5. 5 M.R.S. Dias, C. Gong, Z.A. Benson, M.S. Leite: Adv. Opt. Mater., 2018, vol. 6, pp. 1700830-8. https://doi.org/10.1002/adom.201700830

    Article  CAS  Google Scholar 

  6. Y.N. Zhou: Microjoining and nanojoining, Woodhead Publishing, Cambridge, 2008, ISBN 9781845691790

  7. 7 A.S. Rogachev, S.G. Vadchenko, A.S. Mukasyan: Appl. Phys. Lett., 2012, vol. 101, pp. 063119-4. http://dx.doi.org/10.1063/1.4745201

    Article  CAS  Google Scholar 

  8. 8 A.S. Rogachev, S.G.Vadchenko, F. Baras, O. Politano, S. Rouvimov, N.V. Sachkova, M.D. Grapes, T.P. Weihs, A.S. Mukasyan: Combust. Flame, 2016, vol. 166, pp. 158-169. https://doi.org/10.1016/j.combustflame.2016.01.014

    Article  CAS  Google Scholar 

  9. D.J. Fisher: Bonding by self-propagating reaction, Materials Research Forum LLC, Millersville, PA, 2019, ISBN 978-1-64490-008-6.

  10. 10 J. Li, L. Liu, L. Deng, B. Ma, F. Wang, L. Han: IEEE Electr. Device Lett., 2011, vol. 32, pp. 1433-35. https://doi.org/10.1109/LED.2011.2161749

    Article  CAS  Google Scholar 

  11. 11 D. Zuo, S. Hu, J. Shen, Z. Xue: Mater. Design, 2014, vol.58, pp. 357-362. https://doi.org/10.1016/j.matdes.2014.02.004

    Article  CAS  Google Scholar 

  12. 12 W.-B. Lee, K.-S. Bang, S.-B. Jung: J. Alloy. Compd., 2005, vol. 390, pp. 212–219. https://doi.org/10.1016/j.jallcom.2004.07.057

    Article  CAS  Google Scholar 

  13. 13 J. Zhang, B.-H. Wang, G.-H. Chen, R.-M. Wang, C.-H. Miao, Z.-X. Zheng, W.-M. Tang: Trans. Nonferr. Metal. Soc. China, 2016, vol. 26, pp. 3283-3291. https://doi.org/10.1016/S1003-6326(16)64462-X

    Article  CAS  Google Scholar 

  14. 14 J.L. Murray: Int. Metal. Rev., 1985, vol. 30, pp. 211-234. https://doi.org/10.1179/imtr.1985.30.1.211

    Article  CAS  Google Scholar 

  15. 15 R. Pretorius, A.M. Vredenberg, F.W. Saris, R. de Reus: J. Appl. Phys., 1991, vol. 70, pp. 3636-3646. https://doi.org/10.1063/1.349211

    Article  CAS  Google Scholar 

  16. 16 R. Pretoriuos, Ch.C. Theron, A. Vantomme, J.W. Mayer: Critical Reviews in Solid State and Materials Science, 1999, vol. 24, pp. 1-62. DOI: 10.1080/10408439991329161

    Article  Google Scholar 

  17. 17 H.G. Jiang, J.Y. Dai, H.Y. Tong, B.Z. Ding, Q.H. Song, Z.Q. Hu: J. Appl. Phys., 1993, vol. 74, pp. 6165-6169. https://doi.org/10.1063/1.355183

    Article  CAS  Google Scholar 

  18. 18 C.B. Ene, G. Schmitz, T. Al-Kassab, R. Kirchheim: Ultramicroscopy, 2007, vol. 107, pp. 802-07. https://doi.org/10.1016/j.ultramic.2007.02.012

    Article  CAS  Google Scholar 

  19. C.B. Ene, Thermal stability and reaction of metallic multilayers, Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität Göttingen, 2007, 120 p. http://hdl.handle.net/11858/00-1735-0000-0006-B464-6.

  20. 20 J.M. Vandenberg, R.A. Hamm: Thin Solid Films, 1982, vol. 97, pp. 313-323. https://doi.org/10.1016/0040-6090(82)90523-5

    Article  CAS  Google Scholar 

  21. 21 Y. Guo, G. Liu, H. Jin, Z. Shi: J. Mater. Sci., 2011, vol. 46, pp. 2467-2473. https://doi.org/10.1007/s10853-010-5093-0

    Article  CAS  Google Scholar 

  22. 22 D.L. Zhang, D.Y. Ying: Mater. Sci. Eng. A, 2001, vol. 301, pp. 90-96. https://doi.org/10.1016/S0921-5093(00)01388-5

    Article  Google Scholar 

  23. 23 H. Xu, I. Qin, H. Clauberg, B. Chylak, V.L. Acoff: Scripta Mater., 2016, vol. 115, pp. 1-5. https://doi.org/10.1016/j.scriptamat.2015.12.025

    Article  CAS  Google Scholar 

  24. 24 F. Haidara, M.-C. Record, B. Duployer, D. Mangelinck: Surf. Coat. Techn., 2012, vol. 206, pp. 3851-3856. https://doi.org/10.1016/j.surfcoat.2012.01.065

    Article  CAS  Google Scholar 

  25. 25 J.A. Rayne, M.P. Shearer, C.L. Bauer: Thin Solid Films, 1980, vol. 65, pp. 381-390. https://doi.org/10.1016/0040-6090(80)90248-5

    Article  CAS  Google Scholar 

  26. 26 R.A. Hamm, J.M. Vandenberg: J. Appl. Phys., 1984, vol. 56, pp. 293-299. http://dx.doi.org/10.1063/1.333960

    Article  CAS  Google Scholar 

  27. ADVENT Research Materials Ltd, Oxford, U.K. https://www.advent-rm.com.

  28. Powder Diffraction File (PDF 4+, 2018), Inorganic Phases Database, International Center for Diffraction Data (ICDD), Swarthmore, PA. http://www.icdd.com/products/pdf4.htm.

  29. P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on CD-ROM), Release 2011/12, ASM International®, Materials Park, OH.

  30. 30 J.L. Lábár: Microsc. Microanal., 2008, vol. 14, pp. 287-295. https://doi.org/10.1017/S1431927608080380

    Article  CAS  Google Scholar 

  31. 31 J.L. Lábár: Microsc. Microanal., 2009, vol. 15, pp. 20-29. https://doi.org/10.1017/S1431927609090023

    Article  CAS  Google Scholar 

  32. 32 S.M. Zharkov, E.T. Moiseenko, R.R. Altunin: J. Solid State Chem., 2019, vol. 269, pp. 36-42. https://doi.org/10.1016/j.jssc.2018.09.009

    Article  CAS  Google Scholar 

  33. 33 R.R. Altunin, E.T. Moiseenko, S.M. Zharkov: Phys. Solid State, 2018, vol. 60, pp. 1413-1418. https://doi.org/10.1134/S106378341807003X

    Article  CAS  Google Scholar 

  34. 34 S.M. Zharkov, E.T. Moiseenko, R.R. Altunin, N.S. Nikolaeva, V.S. Zhigalov, V.G. Myagkov: JETP Lett., 2014, vol. 99, pp. 405-409. https://doi.org/10.1134/S0021364014070145

    Article  CAS  Google Scholar 

  35. 35 E.T. Moiseenko, R.R. Altunin, S.M. Zharkov: Phys. Solid State, 2017, vol. 59, pp. 1233–37. https://doi.org/10.1134/S1063783417060154

    Article  CAS  Google Scholar 

  36. 36 S.M. Zharkov, R.R. Altunin, E.T. Moiseenko, G.M. Zeer, S.N. Varnakov, S.G. Ovchinnikov: Solid State Phenom., 2014, vol. 215, pp. 144-149. https://doi.org/10.4028/www.scientific.net/SSP.215.144

    Article  CAS  Google Scholar 

  37. 37 V.G. Myagkov, L.E. Bykova, O.A. Bayukov, V.S. Zhigalov, I.A. Tambasov, S.M. Zharkov, A.A. Matsynin, G.N. Bondarenko: J. Alloys Compd., 2015, vol. 636, pp. 223-228. https://doi.org/10.1016/j.jallcom.2015.02.012

    Article  CAS  Google Scholar 

  38. 38 V.G. Myagkov, V.S. Zhigalov, L.E. Bykova, S.M. Zharkov, A.A. Matsynin, M.N. Volochaev, I.A. Tambasov, G.N. Bondarenko: J. Alloys Compd., 2016, vol. 665, pp. 197-203. https://doi.org/10.1016/j.jallcom.2015.12.257

    Article  CAS  Google Scholar 

  39. L.E. Bykova, S.M. Zharkov, V.G. Myagkov, V.S. Zhigalov, G.S. Patrin: JOM, 2020, vol. 72 (In Press). https://doi.org/10.1007/s11837-019-03919-5.

  40. R.W. Revie, H.H. Uhlig: Corrosion and Corrosion Control, 4th ed., Wiley, New Jersey, 2008; https://doi.org/10.1002/9780470277270. ISBN 9780470277270. http://onlinelibrary.wiley.com/book/10.1002/9780470277270.

  41. R.W. Revie: Uhlig’s Corrosion Handbook, 3rd ed., Wiley, New Jersey, 2011. ISBN 9780471784944.

  42. M. Klinger. CrysTBox—Crystallographic Toolbox. Institute of Physics of the Czech Academy of Sciences, 2015. ISBN 978-80-905962-3-8. http://www.fzu.cz/~klinger/crystbox.pdf.

  43. 43 H.T.G. Hentzell, K.N. Tu: J. Appl. Phys., 1983, vol. 54, pp. 6929-6937. https://doi.org/10.1063/1.332000

    Article  CAS  Google Scholar 

  44. 44 H.T.G. Hentzell, R.D. Thompson, K.N. Tu: Materials Lett., 1983, vol. 2, pp. 81-84. https://doi.org/10.1016/0167-577X(83)90041-1

    Article  CAS  Google Scholar 

  45. B. Predel, Al-Cu (Aluminum-Copper), in O. Madelung (Ed.), Landolt-Börnstein—Group IV Physical Chemistry, Vol. 5A (Ac-Au—Au-Zr), Springer, Berlin, 1991, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys. https://doi.org/10.1007/10000866_100. ISBN 978-3-540-15516-4 (Print) 978-3-540-39444-0 (Online). https://materials.springer.com/lb/docs/sm_lbs_978-3-540-39444-0_100.

  46. 46 K. Rajan, E.R. Wallach: J. Cryst. Growth, 1980, vol. 49, pp. 297-302. https://doi.org/10.1016/0022-0248(80)90164-5

    Article  CAS  Google Scholar 

  47. 47 R.W. Balluffi, J.M. Blakely: Thin Solid Films, 1975, vol. 25, pp. 363-292. https://doi.org/10.1016/0040-6090(75)90056-5

    Article  CAS  Google Scholar 

  48. 48 V.I. Dybkov: J. Mater. Sci., 1987, vol. 22, pp. 4233-4239. https://doi.org/10.1007/BF01132013

    Article  CAS  Google Scholar 

  49. W. Martienssen, H. Warlimont: Springer handbook of condensed matter and materials data, Springer-Verlag Berlin Heidelberg, 2005, ISBN 978-3-540-30437-1.

  50. 50 C. Macchioni, J.A. Rayne, S. Sen, C.L. Bauer: Thin Solid Films, 1981, vol. 81, pp. 71-78. https://doi.org/10.1016/0040-6090(81)90506-X

    Article  CAS  Google Scholar 

  51. S. Pfeifer, S. Großmann: IEEE 58th Holm Conference on Electrical Contacts (Holm), 2012. https://doi.org/10.1109/HOLM.2012.6336554.

  52. 52 J.L. McCrea, K.T. Aust, G. Palumbo, U. Erb: MRS Online Proceedings Library Archive, 1999, vol. 581, pp. 461-466. https://doi.org/10.1557/PROC-581-461

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support from the Russian Science Foundation (Grant #18-13-00080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey M. Zharkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 20, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, E.T., Altunin, R.R. & Zharkov, S.M. In Situ Electron Diffraction and Resistivity Characterization of Solid State Reaction Process in Cu/Al Bilayer Thin Films. Metall Mater Trans A 51, 1428–1436 (2020). https://doi.org/10.1007/s11661-019-05602-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05602-5

Navigation