Skip to main content
Log in

Numerical Prediction and Experimental Validation of the Microstructure of Bearing Steel Ball Formation in Warm Skew Rolling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Direct deformation spheroidization (DDS) of carbides in warm conditions can improve the microstructure and performance of bearing steel. In this study, based on the carbide spheroidization mechanism, a set of multiaxial constitutive equations was developed to predict the microstructure evolution of bearing steel 52100 during warm skew rolling (SR). The derived multiaxial constitutive equations were implemented in DEFORM-3D software through a user subroutine. FE simulation of warm SR was performed to predict the formation and microstructure evolution of bearing steel balls (BSBs). The distribution of the normalized dislocation density, carbide phase transformation fraction and carbide spheroidization fraction within BSBs was predicted via FE simulation of warm SR. To validate the FE simulation results, warm SR experiments were conducted to produce BSB specimens with 30 mm diameter. The microstructure of BSB specimens was observed to analyze their microstructure distribution in the longitudinal and transversal sections. The predicted and experimental results were compared, and the results show that the predicted carbide spheroidization distribution agrees well with the experimental results. This indicates that the formation and microstructure of BSB during warm SR can be predicted well using the derived multiaxial constitutive equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12

Similar content being viewed by others

References

  1. H. K. D. H. Bhadeshia: Prog. Mater. Sci., 2012, vol. 57, pp. 268-435.

    Article  CAS  Google Scholar 

  2. T. He and Y.M. Huo: T. Indian I. Metals, 2017, 10, 1-9.

    Google Scholar 

  3. J. Tomczak, Z. Pater and T. Bulzak: Arch. Civ. Mech. Eng., 2014, vol. 14, pp. 104-113.

    Article  Google Scholar 

  4. C.C. Hsu, J.H. Huang, W.C. Chen and Y.K. Fuh: Int. J. Adv. Manuf. Tech., 2017, vol. 89, pp. 2119-2128.

    Article  Google Scholar 

  5. Z.H. Hu, B.Y. Wang and Z.H. Zheng: Front. Mech. Eng., 2018, 13, 17-24.

    Article  Google Scholar 

  6. Z.H. Zheng, B.Y. Wang and Z.H. Hu: Chin. J. Eng., 2015, vol. 37, pp. 782-788.

    Google Scholar 

  7. G.X. Huang, B.S. Sun, W.F. Peng, X.D. Shu, W. Lu: Adv. Mater. Res., 2015, 1095, 837-841.

    Article  Google Scholar 

  8. Z. Pater: Int. J. Mater Prod. Tec., 2016, vol. 53, pp. 137-142.

    Article  CAS  Google Scholar 

  9. Z. Pater, J. Tomczak, J. Bartnicki, M. R. Lovell and P. L. Menezes: Int. J. Mach. Tool Manu., 2013, vol. 67, pp. 1-7.

    Article  Google Scholar 

  10. Z. Pater: Metal., 2016, vol. 55, pp. 233-236.

    Google Scholar 

  11. P. Zhang and Y.D. Zhou: Mod. Manu. Eng., 2012, vol. 10, pp.116-119.

    Google Scholar 

  12. S.C. Yang and C.K. Chen: P. I. Mech. Eng. Part C, 2001, vol. 215, pp. 523-532.

    Article  Google Scholar 

  13. L. Hua, Z.H. Hu: Part rolling forming technology, Chemical industry press, Beijing, 2010, pp.154-168.

    Google Scholar 

  14. Q. Cao, L. Hua and D.S. Qian: J. C. Sou. Uni., 2015, vol. 22, pp. 1175-1183.

    Article  CAS  Google Scholar 

  15. Q. Cao, L. Hua and D.S. Qian: Bear., 2015, vol. 1, pp.16-21.

    Google Scholar 

  16. Y.M. Huo, J.G. Lin, Q. Bai, B.Y. Wang, X.F. Tang and H.C. Ji: J. Mater. Process. Tech., 2017, vol. 239, pp. 359-369.

    Article  Google Scholar 

  17. J.G. Lin: Fundamentals of Materials Modelling for Metals Processing Technologies, 2015, Imperial college Press, London, 2015, pp. 240-300.

    Book  Google Scholar 

  18. A. Benaarbia, Y. Rae and W. Sun: Int. J. Mech. Sci., 2018, vol. 136, pp. 36-49.

    Article  Google Scholar 

  19. B. Li, J. Lin and X. Yao: Int. J. Mech. Sci., 2002, vol. 44, pp. 987-1002.

    Article  Google Scholar 

  20. Y.M. Huo, T. He, S.S. Chen, H.C. Ji and R.M. Wu: J. Manu. Process., 2019, vol. 44, pp. 113-124.

    Article  Google Scholar 

  21. J. Lin, B.H. Cheong and X. Yao: J. Mater. Process. Tech., 2002, vol. 125, pp. 199-205.

    Article  Google Scholar 

  22. Y.M. Huo, T. He, S.S. Chen and R.M. Wu: JOM, 2018, vol. 70, pp.1112-1117.

    Article  CAS  Google Scholar 

  23. Y.M. Huo, Q. Bai, B.Y. Wang, J.G. Lin and J. Zhou: J. .Mater. Process. Tech., 2015, vol. 223, pp. 274-283.

    Article  CAS  Google Scholar 

  24. T. He, Y.M. Huo, X.J. Shi and S.S. Chen: Metall. Mater. Trans. A, 2019, vol. 50, pp. 926-946.

    Google Scholar 

  25. Z. Pater: Arch. Metall. Mater., 2017, vol. 62, pp. 85-90.

    Article  Google Scholar 

  26. J. Tomczak, Z. Pater and J. Bartnicki: Arch. Metall. & Mater., 2013, vol. 58, pp. 1071-1076.

    Article  Google Scholar 

  27. H. Hwang and B.C.D. Cooman: Steel Res. Int., 2016, vol. 87, pp. 112-125.

    Article  CAS  Google Scholar 

  28. S.D. Gu, L.W. Zhang, C.X. Yue, J.H. Ruan, J.L. Zhang and H.J. Gao: Comp. Mater. Sci., 2011, vol. 50, pp. 1951-1957.

    Article  CAS  Google Scholar 

  29. S. Gu, L.W. Zhang, Z. Chi, J.H. Ruan, Z.Yu: J. of Mater. Eng. Perform., 2013, vol. 24,pp.1790-1798.

    Article  Google Scholar 

  30. C.X. Yue, L.W. Zhang, J.H. Ruan and H.J. Gao: Appl. Math. Model., 2010, 34, 2644-2653.

    Article  Google Scholar 

  31. J. Guo and D.S. Qian: J. Plast. Eng., 2014, vol. 21, pp. 40-45.

    CAS  Google Scholar 

  32. A. Lahiri, P. Shanthraj and F. Roters: Model. Simul. Mater. Sci. Eng., 2019, vol. 27, pp.1-28.

    Article  Google Scholar 

  33. D.X. Han, L.X. Du, B. Zhang and R.D.K. Misra: J. Mater. Sci., 2019, vol. 54, pp. 2612-2627.

    Article  CAS  Google Scholar 

  34. S. Guk, R. Kawalla and U. Prahl: Steel Res. Int., 2019, vol. 90. 40-47.

    Article  Google Scholar 

  35. B. Romantsev, A. Goncharuk, A. Aleshchenko, Y. Gamin and M. Mintakhanov: Int. J. Adv. Manuf. Tech., 2018, vol. 97, pp. 3223-3230.

    Article  Google Scholar 

  36. D. J. Politis, J. Lin, T. A. Dean and D. S. Balint: J. Mater. Process. Tech., 2014, vol. 214, pp. 2248-2260.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is funded by the National Natural Science Foundation of China (Grant No. 51805314), National Key Research and Development Program of China (Grant No. 2018YFB1307900), Shanghai Science and Technology Commission (Grant No. 16030501200), Shanghai University of Engineering and Science (Grant Nos. E3-0903-17-01006 and E3-0501-18-01002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanming Huo or Tao He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 20, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., He, T., Wang, B. et al. Numerical Prediction and Experimental Validation of the Microstructure of Bearing Steel Ball Formation in Warm Skew Rolling. Metall Mater Trans A 51, 1254–1263 (2020). https://doi.org/10.1007/s11661-019-05589-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05589-z

Navigation