Ferrite Growth During Cooling Through the Ferrite-Austenite-Graphite Field in SGI


This investigation examines the growth of ferrite during the cooling of spheroidal graphite cast irons through the ferrite-austenite-graphite phase field as conditioned by the partitioning of Silicon. Two different melts are examined. Ferrite growth was assumed to take place under paraequilibrium conditions. The study involves the measurement of the temperature of ferrite precipitation start under slow cooling conditions by DSC. Thermo-Calc was used to calculate the equilibrium concentration of Si at the ferrite precipitation start temperature. Calculated Si concentrations are compared to microsegregation profiles measured on the same alloys in a previous study. The results led to conclude that partitioning of Silicon does not represent a constraint for ferrite to grow between the upper and lower limits of the three-phase field, contradicting some of the existing literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    X. Guo and D. Stefanescu. Int. J Cast. Met. Res, 1999, vol 11, pp. 437-441.

    CAS  Article  Google Scholar 

  2. 2.

    D. Stefanescu. Metall. Trans. A, 2017, vol 48A, pp. 2127-2129.

    Article  Google Scholar 

  3. 3.

    J. Lacaze. Metall. Trans. A, 2017, Vol. 48A, pp. 2130-2131.

    Article  Google Scholar 

  4. 4.

    F.D. Carazo, P.M. Dardati, D.J. Celentano and L.A. Godoy. Metall. Trans. A, 2017, vol 48A, pp. 63-75.

    Article  Google Scholar 

  5. 5.

    J. Lacaze. Metall. Trans. A, 2017, 48A, pp. 1-2.

    Google Scholar 

  6. 6.

    F. Carazo. Metall. Trans. A, 2017, 48A, pp. 3-5.

    Google Scholar 

  7. 7.

    R. Boeri and F. Weinberg. AFS Trans, 1989, vol 97, pp. 179-184.

    Google Scholar 

  8. 8.

    A. Freulon, P. de Parseval, C. Josse, J. Bourdie and J. Lacaze. Metall. Trans. A, 2016, vol 47A, pp. 5362-5371.

    Article  Google Scholar 

  9. 9.

    L.N. García, F.D. Carazo and R.E. Boeri. Metall. Mater. Trans. A, 2019, vol 50, pp. 5585-5593.

    Article  Google Scholar 

  10. 10.

    D. E. Coates. Metall. Mater. Trans. B, 1973, vol 4, pp. 1077-1086.

    CAS  Article  Google Scholar 

  11. 11.

    J. Lacaze, C. Wilson and C. Bak. Scand. J. Metall, 1994, vol 23, pp. 151-163.

    CAS  Google Scholar 

  12. 12.

    J.O. Andersson, T. Helander, L. Höglund, et al. Calphad, 2002, vol 26, pp. 273-312.

    CAS  Article  Google Scholar 

  13. 13.

    M. Wessen and I.L. Svensson. Metall. Trans. A, 1996, vol 27A, pp. 2209-2220.

    CAS  Article  Google Scholar 

  14. 14.

    L.N. García, F.D. Carazo and P.M. Dardati. Int. J. Cast. Met. Res, 2018, vol 31, pp. 209-221.

    Google Scholar 

  15. 15.

    ASTM A536-84(2019)e1, Standard Specification for Ductile Iron Castings, ASTM International, West Conshohocken, PA, 2019. www.astm.org.

  16. 16.

    R. Ivanova, W. Sha and S. Malinov. ISIJ Int, 2004, vol 44, pp. 886-895.

    CAS  Article  Google Scholar 

  17. 17.

    R. Przeliorz and J. Piątkowski. Mater. Sci. Eng, 2011, vol 22, pp. 1-9.

    Article  Google Scholar 

  18. 18.

    V. Gerval and J. Lacaze. ISIJ Int, 2000, vol 40, pp. 386-392.

    CAS  Article  Google Scholar 

  19. 19.

    Z. Jiyang. China foundry, 2010, vol 7, pp. 470-478.

    Google Scholar 

  20. 20.

    C.F.Yeung, H. Zhao and W.B. Lee. Mater. Sci. Technol, 1999, vol 55, pp. 733-737.

    Article  Google Scholar 

  21. 21.

    A. Hazotte, H. Santos and J. Lacaze. Int. J. Cast. Met. Res, 2003, vol 16, pp. 155-160.

    CAS  Article  Google Scholar 

  22. 22.

    A. Basso, R. Martinez and A. Sikora. Key Eng. Mater, 2010, vol 457, pp. 145-150.

    Article  Google Scholar 

Download references


The authors would like to thank the Sánchez and Piccioni Company for providing their facilities to prepare the melts. Laura N. García, Fernando D. Carazo and Roberto E. Boeri are members of CONICET and would like to thank the institution for the economic support for their respective researches. Laura N. García would like to especially thank the SECITI (Secretaría de Estado de Ciencia, Tecnología e Innovación del Gobierno de San Juan) for supplying the flight tickets and to the INP school for the economic support for her stay at the CIRIMAT laboratory at Toulouse, France. Finally, Laura N. García would like to deeply thank Prof. Jacques Lacaze for transmitting her all his knowledge about Thermo-Calc software and for the enriching discussions of this research.

Author information



Corresponding author

Correspondence to Laura Noel García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 3, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García, L.N., Carazo, F.D. & Boeri, R.E. Ferrite Growth During Cooling Through the Ferrite-Austenite-Graphite Field in SGI. Metall Mater Trans A 51, 631–637 (2020). https://doi.org/10.1007/s11661-019-05571-9

Download citation