Skip to main content
Log in

Simulation of Austenite Formation During Continuous Heating from Low Carbon Martensite with Poly-dispersed Cementite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nucleation and growth of austenite during continuous heating in plain carbon martensite is simulated using classical nucleation and diffusion growth theories assuming that austenite is nucleated on cementite particles at prior austenite grain boundaries and martensite packet, block, and interlath boundaries. A critical nucleus model on the spherical substrate was modified to take into account the influence of the boundary energy on which cementite particles formed. Simulations were carried out using the particle size distribution of cementite measured in an Fe-0.2 mass pct C alloy heated to near eutectoid temperature (Ae1). Austenite nucleation stopped in a very short time regardless of boundary site or particle size of cementite due to the fast decrease in carbon supersaturation and the depletion of nucleation sites. The fraction of austenite nucleated on cementite at prior austenite boundaries and martensite packet boundaries etc was much greater than that nucleated on cementite at interlath boundaries. While cementite particles dissolved quickly after austenite was nucleated, a large proportion of cementite particles at lath boundaries remained undissolved until they disappeared at 30 °C to 40 °C above Ae1. The evolution of austenite grain size was also simulated after austenitization was completed, and compared with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.F. Mehl and W.C. Hagel: Prog Met Phys 1956, vol. 6, pp. 74-134

    Article  CAS  Google Scholar 

  2. R.R. Judd and H.W. Paxton: Trans TMS-AIME 1968, vol. 242, pp. 206-215

    CAS  Google Scholar 

  3. G.R. Speich and A. Szirmae: Trans TMS-AIME 1969, vol. 245, pp. 1063-1074

    CAS  Google Scholar 

  4. G.R. Speich, V.A. Demarest and R.L. Miller: Metall Trans A, 1981, vol. 12A, pp. 1419-1428

    Article  Google Scholar 

  5. P.A. Wycliffe, G.R. Purdy and J.D. Embury: Canad Metall Quart 1981, vol.20, pp. 339-350

    Article  CAS  Google Scholar 

  6. M. Enomoto and K. Hayashi: J Mater Sci 2015, vol. 50, pp. 6786-6793

    Article  CAS  Google Scholar 

  7. M. Enomoto and K. Hayashi: J Mater Sci 2018, vol. 53, pp. 6911-6921.

    Article  CAS  Google Scholar 

  8. F.J. Barbaro, P. Krauklis and K.E. Easterling: Mater Sci Tech 1989, vol. 5, pp. 1057-1068

    Article  CAS  Google Scholar 

  9. H.I. Aaronson, M. Enomoto, J.K. Lee: Mechanisms of Diffusional Phase Transformations in Metals and Alloys, Ch.2 Diffusional Nucleation in Solid-Solid transformations, CRC Press, Taylor and Francis Group, Boca Raton, 2010.

  10. J.K. Lee, J. H. Choy and Y. Choi: Surf Sci 1991, vol. 256, pp. 147-158

    Article  CAS  Google Scholar 

  11. H.B. Aaron, D. Fainstein, G.R. Kotler: J Appl Phys 1970, vol. 41, pp. 4404-4410

    Article  Google Scholar 

  12. M. Hillert: Acta Metall 1965, vol. 13, pp. 227-238

    Article  CAS  Google Scholar 

  13. L.H. Van Vlack: Trans TMS-AIME, 1951, vol. 191, pp. 251-259

    Google Scholar 

  14. C.S. Smith: Trans ASM 1953, vol. 45, pp. 533-575

    CAS  Google Scholar 

  15. W.H. Beyer (ed) Standard Mathematical Tables. CRC Press, Boca Raton (1978)

    Google Scholar 

  16. J. Ågren: Acta Metall 1982, vol. 30, pp. 841-851

    Article  Google Scholar 

  17. J. Ågren: Scripta Metall 1986, vol. 20, pp. 1507-1510

    Article  Google Scholar 

  18. C. Qiu, S. van der Zwaag: Steel Res Int 1997, vol. 68, pp. 32–38

    Article  CAS  Google Scholar 

  19. J. Ågren: Scand J Metall 1990, vol.19, pp. 2-8

    Google Scholar 

  20. L.J. Swartzendruber: Properties of Iron, in Phase Diagrams of Binary Iron Alloys, ed. H. Okamoto, ASM International, Metals Park, OH, 1993, p. 1

  21. M. Perez: Scripta Mater 2005, vol. 52, pp. 709-712

    Article  CAS  Google Scholar 

  22. S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki: Acta Metall 2003, vol. 51, pp. 1789-1799

    CAS  Google Scholar 

  23. A.H. Pham, T. Ohba, S. Morito, T. Hayashi: J Alloys Comp 2013, vol. 5775, pp. 5583-5586

    Google Scholar 

  24. E.E. Underwood: in Quantitative stereology, ch 5, Addison-Wesley, Reading, Mass, 1970, pp. 109-135

    Google Scholar 

  25. W.F. Lang, III, M. Enomoto and H.I. Aaronson: Metall Mater Trans A 1988, vol. 19A, pp. 427-40

    Article  Google Scholar 

  26. S.E. Offerman, N.H. Van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H. F. Poulsen, M.Th. Rekveldt and S. Van der Zwaag: Science 2002, vol. 298, 1003-1005

    Article  CAS  Google Scholar 

  27. H. Sharma: Ph.D thesis TU Delft, Ch. 6, 2012, pp. 151–86

  28. H. Sharma, J. Sietsma and S. E. Offerman, Sci. Rep. 2016, https://doi.org/10.1038/srep30860

    Article  Google Scholar 

  29. T. Shinozaki, Y. Tomota, T. Hukino, T. Suzuki, ISIJ International 2017, vol. 57, pp. 533-539

    Article  CAS  Google Scholar 

  30. T. Nishizawa: Tetsu-to-Hagane 1984, vol. 70, pp. 194-202

    Article  Google Scholar 

  31. M. Hillert: Metall Mater Trans A 1975, vol. 6A, pp. 5-19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enomoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enomoto, M., Hayashi, K. Simulation of Austenite Formation During Continuous Heating from Low Carbon Martensite with Poly-dispersed Cementite. Metall Mater Trans A 51, 618–630 (2020). https://doi.org/10.1007/s11661-019-05569-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05569-3

Navigation