In-Situ Study on Texture-Dependent Martensitic Transformation and Cyclic Irreversibility of Superelastic NiTi Shape Memory Alloy

Abstract

The texture-dependent mechanical response of superelastic NiTi sheet with dominant {111}<110> fiber is investigated via in-situ digital image correlation (DIC). A new parameter is introduced to evaluate and estimate material irreversibility. We find that transformation strain and cyclic irreversibility evolve nonmonotonically with tensile direction. We confirm that diffused fiber close to {110}<110> plays an important role in the variation of mechanical response.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.

    CAS  Article  Google Scholar 

  2. 2.

    R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers: Acta Mater., 2010, vol. 58, pp. 4503–15.

    CAS  Article  Google Scholar 

  3. 3.

    R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers: Int. J. Plast., 2011, vol. 27, pp. 282–97.

    CAS  Article  Google Scholar 

  4. 4.

    Y. Chen, O. Tyc, L. Kadeřávek, O. Molnárová, L. Heller, and P. Šittner: Mater. Design, 2019, vol. 174, p. 107797.

    CAS  Article  Google Scholar 

  5. 5.

    L. Heller, P. Šittner, P. Sedlák, H. Seiner, O. Tyc, L. Kadeřávek, P. Sedmák, and M. Vronka: Int. J. Plast., 2019, vol. 116, pp. 232–64.

    CAS  Article  Google Scholar 

  6. 6.

    S. Gao and S. Yi: Mater. Sci. Eng. A, 2003, vol. 362, pp. 107–11.

    Article  Google Scholar 

  7. 7.

    S.H. Chang and S.K. Wu: Scripta Mater., 2004, vol. 50, pp. 937–41.

    CAS  Article  Google Scholar 

  8. 8.

    K. Kim and S. Daly: Smart Mater. Struct., 2013, vol. 22, p. 075012.

    Article  Google Scholar 

  9. 9.

    Y. Liu: Acta Mater., 2015, vol. 95, pp. 411–27.

    CAS  Article  Google Scholar 

  10. 10.

    W.N. Hsu, E. Polatidis, M. Šmíd, S.V. Petegem, N. Casati, and H.V. Swygenhoven: Acta Mater., 2019, vol. 167, pp. 149–58.

    CAS  Article  Google Scholar 

  11. 11.

    G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner: Mater. Sci. Eng. A, 2004, vol. 378, pp. 24–33.

    Article  Google Scholar 

  12. 12.

    A. Yawny, J. Olbricht, M. Sade, and G. Eggeler: Mater. Sci. Eng. A, 2008, vols. 481–482, pp. 86–90.

    Article  Google Scholar 

  13. 13.

    C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and A. Tuissi: Int. J. Fatigue, 2014, vol. 66, pp. 78–85.

    CAS  Article  Google Scholar 

  14. 14.

    P. Sedmak, P. Sittner, J. Pilch, and C. Curfs: Acta Mater., 2015, vol. 94, pp. 257–70.

    CAS  Article  Google Scholar 

  15. 15.

    X. Xie, Q. Kan, G. Kang, F. Lu, and K. Chen: Mater. Sci. Eng. A, 2016, vol. 671, pp. 32–47.

    CAS  Article  Google Scholar 

  16. 16.

    L. Zheng, Y. He, and Z. Moumni: Int. J. Plast., 2017, vol. 90, pp. 116–45.

    CAS  Article  Google Scholar 

  17. 17.

    Y. Xiao, P. Zeng, and L. Lei: Int. J. Plast., 2018, vol. 107, pp. 164–88.

    CAS  Article  Google Scholar 

  18. 18.

    C. Yu, G. Kang, and Q. Kan: Int. J. Plast., 2018, vol. 105, pp. 99–127.

    CAS  Article  Google Scholar 

  19. 19.

    C. Yu, G. Kang, X. Xie, and W. Rao: Mech. Mater., 2018, vol. 125, pp. 35–51.

    Article  Google Scholar 

  20. 20.

    L. Heller, H. Seiner, P. Šittner, P. Sedlák, O. Tyc, and L. Kadeřávek: Int. J. Plast., 2018, vol. 111, pp. 53–71.

    CAS  Article  Google Scholar 

  21. 21.

    H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, and Y. Chumlyakov: Mater. Sci. Eng. A, 2001, vol. 314, pp. 67–74.

    Article  Google Scholar 

  22. 22.

    K. Gall, H. Sehitoglu, R. Anderson, I. Karaman, Y.I. Chumlyakov, and I.V. Kireeva: Mater. Sci. Eng. A, 2001, vol. 317, pp. 85–92.

    Article  Google Scholar 

  23. 23.

    K. Gall and H.J. Maier: Acta Mater., 2002, vol. 50, pp. 4643–57.

    CAS  Article  Google Scholar 

  24. 24.

    S.W. Robertson, V. Imbeni, H.R. Wenk, and R.O. Ritchie: J. Biomed. Mater. Res. A, 2005, vol. 72, pp. 190–99.

    CAS  Article  Google Scholar 

  25. 25.

    G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George: J. Alloy Compd., 2015, vol. 623, pp. 348–53.

    CAS  Article  Google Scholar 

  26. 26.

    A. Ahadi, Y. Matsushita, T. Sawaguchi, Q.P. Sun, and K. Tsuchiya: Acta Mater., 2017, vol. 124, pp. 79–92.

    CAS  Article  Google Scholar 

  27. 27.

    Y. Xiao, P. Zeng, L. Lei, and Y. Zhang: Mater. Design, 2017, vol. 134, pp. 111–20.

    CAS  Article  Google Scholar 

  28. 28.

    K.F. Hane and T.W. Shield: Acta Mater., 1999, vol. 47, pp. 2603–17.

    CAS  Article  Google Scholar 

  29. 29.

    K. Kim and S. Daly: Exp. Mech., 2011, vol. 51, pp. 641–52.

    CAS  Article  Google Scholar 

  30. 30.

    P. Chowdhury and H. Sehitoglu: Prog. Mater. Sci., 2017, vol. 85, pp. 1–42.

    CAS  Article  Google Scholar 

  31. 31.

    S. Alkan, Y. Wu, and H. Sehitoglu: Extreme Mech. Lett., 2017, vol. 15, pp. 38–43.

    Article  Google Scholar 

Download references

One of the authors (YX) acknowledges the support from the Alexander von Humboldt Foundation. The authors are grateful for the support from the National Key Research and Development Program of China (Grant No. 2017YFB0701801).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yao Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 25, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shuai, J., Xiao, Y. In-Situ Study on Texture-Dependent Martensitic Transformation and Cyclic Irreversibility of Superelastic NiTi Shape Memory Alloy. Metall Mater Trans A 51, 562–567 (2020). https://doi.org/10.1007/s11661-019-05563-9

Download citation