Skip to main content
Log in

A Promising Horizon in Mechanical and Corrosion Properties Improvement of Ni-Mo Coatings Through Incorporation of Y2O3 Nanoparticles

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni-Mo coatings exhibit desirable corrosion and mechanical properties. Further improvements in their properties can significantly enhance their industrial applications. Reinforcing agents can be incorporated to address this priority. In the present investigation, Ni-Mo alloy and Ni-Mo-Y2O3 nanocomposite coatings were electrodeposited on the copper substrates to study the influences of Y2O3 nanoparticle content on the morphological, microstructural, mechanical, and corrosion properties of the coatings. Results exhibit that there is no change in the phase structure of the Ni-Mo alloy coatings with the incorporation of nanoparticles. Albeit the fact that introduction of the nanoparticles has no influence on the surface morphology of the coatings and all of the electrodeposited coatings show featureless morphology, there is a recognizable decrement in the number of surface-related defects such as pores, voids, and microcracks. Generally, mechanical and corrosion properties of the alloy coatings improve with nanoparticle embedment. Ni-Mo coating electrodeposited from a bath containing 3 g/L Y2O3 (Ni-Mo-3g/L Y2O3) shows the highest microhardness and corrosion resistance primarily originated from its higher Y2O3 content.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1. A. Rasooli, M.S. Safavi, and M.K. Hokmabad: Ceram. Int., 2018, vol. 44, pp. 6466–73.

    CAS  Google Scholar 

  2. M.S. Safavi and A. Rasooli: Surf. Eng., 2019, pp. 1–11.

  3. 3. M.S. Safavi and A. Rasooli: Surf. Coat. Technol., 2019, vol. 372, pp. 252–59.

    CAS  Google Scholar 

  4. 4. M.S. Safavi, F. Babaei, A. Ansarian, and I. Ahadzadeh: Ceram. Int., 2019, vol. 45, pp. 10951–10960.

    CAS  Google Scholar 

  5. 5. M. Alizadeh and H. Safaei: Appl. Surf. Sci., 2018, vol. 456, pp. 195–203.

    CAS  Google Scholar 

  6. 6. E. Beltowska‐Lehman: Phys. Status Solidi C, 2008, vol. 5, pp. 3514–17.

    CAS  Google Scholar 

  7. 7. M.S. Safavi and M. Etminanfar: JUFGNSM, 2019, vol. 52, pp. 1–17.

    CAS  Google Scholar 

  8. 8. P.C. Huang, K.H. Hou, G.L. Wang, M.L. Chen, and J.R. Wang: Int. J. Electrochem. Sci., 2015, vol. 10, pp. 4972–84.

    CAS  Google Scholar 

  9. 9. Q. Han, S. Cui, N. Pu, J. Chen, K. Liu, and X. Wei: Int. J. Hydrog. Energy, 2010, vol. 35, pp. 5194–5201.

    CAS  Google Scholar 

  10. 10. E. Beltowska-Lehman, A. Bigos, P. Indyka, and M. Kot: Surf. Coat. Technol., 2012, vol. 211, pp. 67–71.

    CAS  Google Scholar 

  11. 11. V.V. Kuznetsov, M.R. Pavlov, K.V. Kuznetsov, and V.N. Kudryavtsev: Russ. J. Electrochem., 2003, vol. 39, pp. 1338–41.

    CAS  Google Scholar 

  12. 12. H.S. Yancheshmeh and M. Ghorbani: Surf. Coat. Technol., 2014, vol. 238, pp. 158–64.

    Google Scholar 

  13. 13. P.C. Huang, K.H. Hou, H.H. Sheu, M.D. Ger, and G.L. Wang: Surf. Coat. Technol., 2014, vol. 258, pp. 639–45.

    CAS  Google Scholar 

  14. 14. L.S Sanches, S.H. Domingues, C.E. Marino, and L.H. Mascaro: Electrochem. Commun., 2004, vol. 6, pp. 543–48.

    CAS  Google Scholar 

  15. 15. Y. Zeng, Z. Li, M. Ma, and S. Zhou: Electrochem. Commun., 2000, vol. 2, pp. 36–38.

    CAS  Google Scholar 

  16. 16. A. Laszczyńska, J. Winiarski, B. Szczygieł, and I. Szczygieł: Appl. Surf. Sci., 2016, vol. 369, pp. 224–31.

    Google Scholar 

  17. 17. A. Laszczyńska, W. Tylus, J. Winiarski, and I. Szczygieł: Surf. Coat. Technol., 2017, vol. 317, pp. 26–37.

    Google Scholar 

  18. 18. J. Niedbała: Mater. Sci. Forum, 2006, vol. 514, 465–69.

    Google Scholar 

  19. 19. A. Rezaeiolum, M. Aliofkhazraei, A. Karimzadeh, A.S. Rouhaghdam, and R. Miresmaeili: Surf. Eng., 2018, vol. 34, pp. 423–32.

    CAS  Google Scholar 

  20. 20. N.V. Krstajić, V.D. Jović, L. Gajić-Krstajić, B.M. Jović, A.L. Antozzi, and G.N. Martelli: Int. J. Hydrog. Energy, 2008, vol. 33, pp. 3676–87.

    Google Scholar 

  21. 21. R. Abdel-Karim, J. Halim, S. El-Raghy, M. Nabil, and A. Waheed: J. Alloys Compd., 2012, vol. 530, pp. 85–90.

    CAS  Google Scholar 

  22. 22. M. Allahyarzadeh, B. Roozbehani, and A. Ashrafi: Electrochim. Acta, 2011, vol. 56, pp. 10210–10216.

    CAS  Google Scholar 

  23. 23. E. Chassaing, N. Portail, A.F. Levy, and G. Wang: J. Appl. Electrochem., 2004, vol. 34, pp. 1085–91.

    CAS  Google Scholar 

  24. 24. S. Yagi, A. Kawakami, K. Murase, and Y. Awakura: Electrochim. Acta, 2007, vol. 52, pp. 6041–51.

    CAS  Google Scholar 

  25. 25. R. Mousavi, K. Raeissi, and A. Saatchi: Int. J. Mod. Phys. B, 2008, vol. 22, pp. 3060–68.

    CAS  Google Scholar 

  26. 26. H.S. Maharana, A. Ashok, S. Pal, and A. Basu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 388–99.

    Google Scholar 

  27. 27. K. Mech: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 1–13.

    Google Scholar 

  28. 28. M. Uysal: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2331–41.

    Google Scholar 

  29. 29. J.O. Nielsen, P. Møller, and K. Pantleon: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 1–9.

    Google Scholar 

  30. 30. S. Yang, X. Meng, J. Liu, C. Gui, and W. Xia: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 1936–42.

    Google Scholar 

  31. 31. D. Verma, D. Banerjee, and S.K. Mishra: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 894–904.

    Google Scholar 

  32. 32. S. Pal, R. Sarkar, and V. Jayaram: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3217–36.

    Google Scholar 

  33. 33. N.P. Wasekar, P. Haridoss, and G. Sundararajan: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 476–89.

    Google Scholar 

  34. 34. M. Alizadeh and A. Cheshmpish: Appl. Surf. Sci., 2019, vol. 466, pp. 433–40.

    CAS  Google Scholar 

  35. 35. P.D. Lima-Neto, A.N. Correia, G.L. Vaz, and P.N. Casciano: J. Braz. Chem. Soc., 2010, vol. 21, pp. 1968–76.

    Google Scholar 

  36. A.B. Radwan, K. Ali, R.A. Shakoor, H. Mohammed, T. Alsalama, R. Kahraman, M.M. Yusuf, A.M. Abdullah, M.F. Montemor, and M. Helal: Appl. Surf. Sci., 2018, vol. pp. 457 and 956–67.

  37. 37. E. Beltowska-Lehman and P. Indyka: Thin Solid Films, 2012, vol. 520, pp. 2046–51.

    CAS  Google Scholar 

  38. 38. M. Donten, H. Cesiulis, and Z. Stojek: Electrochim. Acta, 2005, vol. 50, pp. 1405–12.

    CAS  Google Scholar 

  39. 39. Y. Wang, S.L. Tay, S. Wei, C. Xiong, W. Gao, R.A. Shakoor, and R. Kahraman: J. Alloys Compd., 2015, vol. 679, pp. 222–28.

    Google Scholar 

  40. 40. A.R. Madram, H. Pourfarzad, and H.R. Zare: Electrochim. Acta, 2012, vol. 85, pp. 263–67.

    CAS  Google Scholar 

  41. 41. A.F. Zimmerman, G. Palumbo, K.T. Aust, and U. Erb: Mater. Sci. Eng. A, 2002, vol. 328, pp. 137–46.

    Google Scholar 

  42. 42. N. Elkhoshkhany, A. Hafnway, and A. Khaled: J. Alloy Compd., 2017, vol. 695, pp. 1505–14.

    CAS  Google Scholar 

  43. 43. C. Ma, S. Wang, and F. Walsh: Trans. IMF, 2015, vol. 93, pp. 8–17.

    CAS  Google Scholar 

  44. 44. Y. Yang and Y. Cheng: Surf. Coat. Technol., 2011, vol. 205, pp. 3198–3204.

    CAS  Google Scholar 

  45. 45. B. Bakhit and A. Akbari: Surf. Coat. Technol., 2012, vol. 206, pp. 4964–75.

    CAS  Google Scholar 

  46. 46. C.N. Panagopoulos, E.P. Georgiou, A. Tsopani, and L. Piperi: Appl. Surf. Sci., 2011, vol. 257, pp. 4769–73.

    CAS  Google Scholar 

  47. 47. B. Ranjith and G.P. Kalaignan: Appl. Surf. Sci., 2010, vol. 257, pp. 42–47.

    CAS  Google Scholar 

  48. 48. L. Chang, H. Guo, and M. An: Appl. Surf. Sci., 2007, vol. 253, pp. 6085–89.

    CAS  Google Scholar 

  49. 49. Y. Wang, B. Hu, S.L. Tay, F. Hou, W. Gao, and W. Chen: Int. J. Mod. Phys. B, 2017, vol. 31, p. 1744022.

    CAS  Google Scholar 

  50. 50. B.S. Li and A. Lin: Key Eng. Mater., 2008, vol. 373, pp. 200–03.

    Google Scholar 

  51. 51. B. Bakhit, A. Akbari, F. Nasirpouri, and M.G. Hosseini: Appl. Surf. Sci., 2014, vol. 307, pp. 351–59.

    CAS  Google Scholar 

  52. 52. K. Zadeh, R. Shakoor, and A.B. Radwan: Int. J. Electrochem. Sci., 2016, vol. 11, pp. 7020–30.

    CAS  Google Scholar 

  53. 53. I. García, A. Conde, G. Langelaan, J. Fransaer, and J.P. Celis: Corros. Sci., 2003, vol. 45, pp. 1173–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Ahadzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 16, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, M., Safavi, M.S., Mirzazadeh, S. et al. A Promising Horizon in Mechanical and Corrosion Properties Improvement of Ni-Mo Coatings Through Incorporation of Y2O3 Nanoparticles. Metall Mater Trans A 51, 897–908 (2020). https://doi.org/10.1007/s11661-019-05559-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05559-5

Navigation