In-Situ Fabrication of Titanium Iron Intermetallic Compound by the Wire Arc Additive Manufacturing Process

Abstract

An initial attempt has been made to fabricate titanium iron (TiFe) intermetallic compound (IMC) by the wire arc additive manufacturing process which is cheap, fast, and has the ability to produce near-net shape product. The microstructural analysis confirms that TiFe IMC has been successfully fabricated and the wall build-up constitutes of TiFe IMC phase along the build direction. This research suggests an in-situ method of fabricating TiFe IMC for future hydrogen storage applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    G.K. Sujan, Z. Pan, H. Li, D. Laing, and N. Alam: Crit. Rev. Solid State Mater. Sci., 2019, pp. 1–18.

  2. 2.

    V.Y. Zadorozhnyy, G.S. Milovzorov, S.N. Klyamkin, M.Y. Zadorozhnyy, D.V. Strugova, M.V. Gorshenkov, and S.D. Kaloshkin: Prog. Nat. Sci-Mater, 2017, vol. 27, pp. 149-55.

    CAS  Article  Google Scholar 

  3. 3.

    V.Y. Zadorozhnyy, S. Klyamkin, M. Zadorozhnyy, O. Bermesheva, and S. Kaloshkin: Int. J. Hydrogen Energy, 2012. vol. 37, pp. 17131-36.

    CAS  Article  Google Scholar 

  4. 4.

    T. Nobuki, T. Moriya, M. Hatate, J.-C. Crivello, F. Cueevas, and J.-M. Joubert: Metals, 2018, vol. 8, pp. 264.

    Article  Google Scholar 

  5. 5.

    M. Meng, W. Dihua, H. Xiaohong, J. Xianbo, and C.Z. George: Chem.: Eur. J., 2006, vol. 12, pp. 5075-81.

    Article  Google Scholar 

  6. 6.

    M. Panigrahi, E. Shibata, A. Iizuka, and T. Nakamura: Electrochim. Acta, 2013, vol. 93, pp. 143-51.

    CAS  Article  Google Scholar 

  7. 7.

    I. Saita, M. Sato, H. Uesugi, and T. Akiyama: J. Alloys Compd., 2007, vol. 446, pp. 195-99.

    Article  Google Scholar 

  8. 8.

    R. Wakabayashi, S. Sasaki, and T. Akiyama: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 5710-15.

    CAS  Article  Google Scholar 

  9. 9.

    R. Wakabayashi, S. Sasaki, I. Saita, M. Sato, H. Uesugi, and T. Akiyama: J. Alloys Compd., 2009, vol. 480, pp. 592-95.

    CAS  Article  Google Scholar 

  10. 10.

    R. Wakabayashi, S. Sasaki, N. Okinaka, and T. Akiyama: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 9122-27.

    Article  Google Scholar 

  11. 11.

    T. Tsuchiya, N. Yasuda, S. Sasaki, N. Okinaka, and T. Akiyama: Int. J. Hydrogen Energy, 2013, vol. 38, pp. 6681-86.

    CAS  Article  Google Scholar 

  12. 12.

    M. Deguchi, N. Yasuda, C. Zhu, N. Okinaka, and T. Akiyama: J. Alloys Compd., 2015, vol. 622, pp. 102-07.

    CAS  Article  Google Scholar 

  13. 13.

    H. Jiao, D. Tian, J. Tu, and S. Jiao: RSC Adv., 2018, vol. 8, pp. 17575-81.

    CAS  Article  Google Scholar 

  14. 14.

    N. Endo, S. Suzuki, K. Goshome, and T. Maeda: Int. J. Hydrogen Energy, 2017, vol. 42, pp. 5246-51.

    CAS  Article  Google Scholar 

  15. 15.

    C. Gosselin, D. Santos, and J. Huot: J. Phys. D: Appl. Phys., 2017, vol. 50, pp. 375303.

    Article  Google Scholar 

  16. 16.

    S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, and P. Colegrove: Mater. Sci. Technol., 2016, vol. 32, pp. 641-47.

    CAS  Article  Google Scholar 

  17. 17.

    A. Busachi, J. Erkoyuncu, P. Colegrove, F. Martina, and J. Ding: Procedia CIRP, 2015, vol. 37, pp. 48-53.

    Article  Google Scholar 

  18. 18.

    C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, and S.T. Newman: Addit. Manuf., 2018, vol. 22, pp. 672-86.

    Article  Google Scholar 

  19. 19.

    D. Ding, Z. Pan, D. Cuiuri, and H. Li: Int. J. Adv. Manuf. Technol., 2015, vol. 81, pp. 465-81.

    Article  Google Scholar 

  20. 20.

    M. Terakubo, J. Oh, S. Kirihara, Y. Miyamoto, K. Matsuura, and M. Kudoh: Intermetallics, 2007, vol. 15, pp. 133-38.

    CAS  Article  Google Scholar 

  21. 21.

    B. Dutta, and F.H.S. Froes: Titanium powder metallurgy. New York: Elsevier, 2015, pp. 447-68.

    Book  Google Scholar 

  22. 22.

    K. Edalati, J. Matsuda, H. Iwaoka, S. Toh, E. Akiba, and Z. Horita: Int. J. Hydrogen Energy, 2013, vol. 38, pp. 4622-27.

    CAS  Article  Google Scholar 

  23. 23.

    A. Sayir and S.C. Farmer: Acta Mater., 2000, vol. 48, pp. 4691-97.

    CAS  Article  Google Scholar 

  24. 24.

    J. Das, T. Maity, and A. Singh: Trans. Indian Inst. Met., 2015, vol. 68, pp. 1199-205.

    CAS  Article  Google Scholar 

  25. 25.

    T. Maity, B. Roy, and J. Das: Acta Mater., 2015, vol. 97, pp. 170-79.

    CAS  Article  Google Scholar 

  26. 26.

    C.H. Lee, S.H. Hong, J.T. Kim, H.J. Park, G.A. Song, J.M. Park, J.Y. Suh, Y. Seo, M. Qian, and K.B. Kim: Mater. Des., 2014, vol. 60, pp. 363-67.

    Article  Google Scholar 

Download references

The authors acknowledge the financial support from University of Wollongong (UOW) and Commonwealth Scientific and Industrial Research Organisation (CSIRO), respectively. The authors also would like to acknowledge the use of the facilities within the UOW Electron Microscopy centre.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to G. K. Sujan or Zengxi Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 1, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sujan, G.K., Wu, B., Pan, Z. et al. In-Situ Fabrication of Titanium Iron Intermetallic Compound by the Wire Arc Additive Manufacturing Process. Metall Mater Trans A 51, 552–557 (2020). https://doi.org/10.1007/s11661-019-05555-9

Download citation