Low-Temperature Nitridation of 2205 Duplex Stainless Steel


Low-temperature gas-phase nitridation has been studied in \(\updelta \)-ferrite in 2205 duplex stainless steel. High-resolution spatially-resolved compositional and structural analysis revealed two competitive responses to nitridation. Some regions revealed a nitrogen atom fraction approaching 25 at. pct—greater than \(10^6\) times the equilibrium solubility limit at room temperature. Remarkably, there is no expansion or distortion of the body-centered cubic lattice. This is similar to the response of \(\updelta \)-ferrite in this alloy to low-temperature carburization. In conventional transmission electron microscopy bright-field images, the supersaturated ferrite grains show no diffraction contrast—resembling the appearance of amorphous structures—suggesting an unusually high defect density. These grains exhibit spinodal decomposition of the ferrite to nanometer-scale Fe-rich and Cr-rich ferrite domains. High-resolution imaging reveals pristine Fe-rich nanocrystals, whereas the Cr-rich domains are apparently amorphous. Elsewhere in the nitrogen-rich case, an isothermal ferrite-to-austenite phase transformation occurred. The austenite transformation product formed martensitically with a high-aspect-ratio plate-like morphology in the Nishiyama–Wassermann orientation relationship to the ferrite matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    The mechanisms contributing to contrast in an FSD image are complex, and consist primarily of orientation, atomic density, and/or topographic contrast. The orientation of the diode to the phosphor screen, the number of diodes, their orientation to the sample, beam properties, etc. can lead to strong changes in perceived contrast.

  2. 2.

    Generally, a MAD less than 1 is assumed to be a good fit, though less is always preferred; provided the MAD number is not similar for other candidate structures, the solution is reliable.

  3. 3.

    \(\Delta V_{\text {trans}} = (V_f - V_i) / V_i\) where \(V_i\) and \(V_f\) are the initial and final volumes of the two unit cells with equivalent number of atoms.


  1. 1.

    H. Dong: Int. Mater. Rev. 2010, vol. 55, pp. 65–98.

    CAS  Google Scholar 

  2. 2.

    T. Bell: Key Eng. Mater. 2008, vol. 373–374, pp. 289–295.

    Google Scholar 

  3. 3.

    J. Buhagiar: Surf. Eng. 2010, vol. 26, pp. 229–232.

    CAS  Google Scholar 

  4. 4.

    M.A.J. Somers and T.L. Christiansen: in ASM Handbook, vol. 4D, J.L. Dossett and G.E. Totten eds., ASM International, Cleveland, 2014, pp. 439–50.

  5. 5.

    S.R. Collins, P.C. Williams, S.V. Marx, A.H. Heuer, F. Ernst, and H. Kahn: in ASM Handbook, J.L. Dossett and G.E. Totten eds., ASM International, Cleveland, 2014, pp. 451–60.

  6. 6.

    A. H. Heuer, H. Kahn, F. Ernst, G. M. Michal, D. B. Hovis, R. J. Rayne, F. J. Martin, P. M. Natishan: Acta Mater. 2012, vol. 60 (2), pp. 716–725.

    CAS  Google Scholar 

  7. 7.

    A. H. Heuer, H. Kahn, P. M. Natishan, F. J. Martin, L. E. Cross: Electrochim. Acta 2011, vol. 58, pp. 157–160.

    CAS  Google Scholar 

  8. 8.

    D. Wu: Ph.D. thesis, Case Western Reserve University, Cleveland, OH, 2013.

  9. 9.

    G. M. Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal, A. H. Heuer: Acta Mater. 2006, vol. 54 (6), pp. 1597–1606.

    CAS  Google Scholar 

  10. 10.

    G. M. Michal, F. Ernst, A. H. Heuer: Metall. Mater. Trans. A 2006, vol. 37 (6), pp. 1819–1824.

    CAS  Google Scholar 

  11. 11.

    D. Wang, C. W. Chen, J. C. Dalton, F. Yang, R. Sharghi-Moshtaghin, H. Kahn, F. Ernst, R. E. A. Williams, D. W. McComb, A. H. Heuer: Acta Mater. 2015, vol. 86, pp. 193–207.

    CAS  Google Scholar 

  12. 12.

    W. R. de Oliveira, B. C. Kurelo, D. G. Ditzel, F. C. Serbena, C. E. Foerster, G. B. de Souza: Appl. Surf. Sci. 2018, vol. 434, pp. 1161–1174.

    Google Scholar 

  13. 13.

    L. Paijan, M. Berhan, M. Adenan, N. Yusof, and E. Haruman: in Advanced Materials Research, vol. 576, Trans Tech Publications, Zurich, 2012, pp. 260–63.

  14. 14.

    A. M. Gatey, S. S. Hosmani, S. B. Arya, C. A. Figueroa, R. P. Singh: Surf. Eng. 2016, vol. 32 (1), pp. 61–68.

    CAS  Google Scholar 

  15. 15.

    J. Yan, T. Gu, S. Qiu, J. Wang, J. Xiong, H. Fan: Metall. Mater. Trans. B 2015, vol. 46 (3), pp. 1461–1470.

    Google Scholar 

  16. 16.

    J. Yan, J. Wang, Y. Lin, T. Gu, D. Zeng, R. Huang, X. Ji, H. Fan: J. Mater. Eng. Perform. 2014, vol. 23 (4), pp. 1157–1164.

    CAS  Google Scholar 

  17. 17.

    R. Huang, J. Wang, S. Zhong, M. Li, J. Xiong, H. Fan: App. Surf. Sci. 2013, vol. 271, pp. 93–97.

    CAS  Google Scholar 

  18. 18.

    J. Bielawski, J. Baranowska: Surf. Eng. 2010, vol. 26, pp. 299–304.

    CAS  Google Scholar 

  19. 19.

    C. Blawert, B. L. Mordike, Y. Jirásková, O. Schneeweiss: Surf. Coat. Technol. 1999, vol. 116-119, pp. 189–198.

    Google Scholar 

  20. 20.

    C. Blawert, A. Weisheit, B. L. Mordike, F. M. Knoop: Surf. Coat. Technol. 1996, vol. 85, pp. 15–27.

    CAS  Google Scholar 

  21. 21.

    B. Larisch, U. Brusky, H. J. Spies: Surf. Coat. Technol. 1999, vol. 116-119, pp. 205–211.

    Google Scholar 

  22. 22.

    H. J. Spies, C. Eckstein, H. Biermann, A. Franke: Materialwiss. Werkstofftech. 2010, vol. 41, pp. 133–141.

    CAS  Google Scholar 

  23. 23.

    A. M. Kliauga, P. Schwaab, M. Pohl: Z. Werkstoffe 1999, vol. 54, pp. 65–71.

    CAS  Google Scholar 

  24. 24.

    A. M. Kliauga, M. Pohl: Surf. Coat. Technol. 1998, vol. 98, pp. 1205–1210.

    CAS  Google Scholar 

  25. 25.

    A.M. Kliauga: Ph.D. thesis, Ruhr-Universität Bochum, Fakultät für Maschinenbau, Bochum, Germany, 1997.

  26. 26.

    T. L. Christiansen, M. A. J. Somers: Surf. Eng. 2005, vol. 21, pp. 445–455.

    CAS  Google Scholar 

  27. 27.

    M. Pohl, A.M. Kliauga, and W. Reick: in Surface Engineering, Taylor & Francis, New Yok, 1993, pp. 193–98.

  28. 28.

    C. E. Pinedo, A. P. Tschiptschin: Rem: Rev. Esc. Minas 2013, vol. 66 (2), pp. 209–214.

    Google Scholar 

  29. 29.

    R. H. van der Jagt: Heat Treat. Met. 2000, vol. 3, pp. 62–65.

    Google Scholar 

  30. 30.

    G. M. Michal, X. Gu, W. D. Jennings, H. Kahn, F. Ernst, A. H. Heuer: Metall. Mater. Trans. A 2009, vol. 40A, pp. 1781–1790.

    CAS  Google Scholar 

  31. 31.

    H. Kahn, A. H. Heuer, G. M. Michal, F. Ernst, R. Sharghi-Moshtaghin, Y. Ge, P. M. Natishan, R. J. Rayne, F. J. Martin: Surf. Eng. 2012, vol. 28 (3), pp. 213–219.

    CAS  Google Scholar 

  32. 32.

    D. Wang, H. Kahn, F. Ernst, A. Heuer: Acta Mater. 2017, vol. 124, pp. 237–246.

    CAS  Google Scholar 

  33. 33.

    A. Zangiabadi, J. C. Dalton, D. Wang, F. Ernst, A. H. Heuer: Metall. Mater. Trans. A 2017, vol. 48 (1), pp. 8–13.

    CAS  Google Scholar 

  34. 34.

    J. C. Dalton: Ph.D. thesis, Case Western Reserve University, Cleveland, OH, 2017.

  35. 35.

    R. R. Keller, R. H. Geiss: J. Microsc. 2012, vol. 245 (3), pp. 245–251.

    CAS  Google Scholar 

  36. 36.

    P. W. Trimby: Ultramicroscopy 2012, vol. 120, pp. 16–24.

    CAS  Google Scholar 

  37. 37.

    T. De Nys, P. M. Gielen: Metall. Trans. 1971, vol. 2 (5), pp. 1423–1428.

    Google Scholar 

  38. 38.

    D. Wang: Ph.D. thesis, Case Western Reserve University, Cleveland, OH 2014.

  39. 39.

    R. Amini, E. Salahinejad, E. A. Bajestani, M. Hadianfard: J. Alloys Compd. 509(7), pp. 3252–3256 2011.

    CAS  Google Scholar 

  40. 40.

    M. Enayati, M. Bafandeh: J. Alloys Compd. 454(1-2), pp. 228–232 (2008).

    CAS  Google Scholar 

  41. 41.

    J. Loureiro, B. Costa, G. Le Caër, and P. Delcroix: in ICAME 2007, Springer, Berlin, 2008, pp. 281–87.

    Google Scholar 

  42. 42.

    M. Mendez, H. Mancha, G. Mendoza, J. Escalante, M. Cisneros, H. Lopez: Metall. Mater. Trans. A 2002, vol. 33 (10), pp. 3273–3278.

    CAS  Google Scholar 

  43. 43.

    H. Miura, K. Omuro, H. Ogawa: Mater. Trans., JIM 1995, vol. 36 (2), pp. 263–268.

    CAS  Google Scholar 

  44. 44.

    H. Miura, K. Omuro, H. Ogawa: ISIJ Int. 1996, vol. 36 (7), pp. 951–957.

    CAS  Google Scholar 

  45. 45.

    Y. Ogino, K. Namba, T. Yamasaki: ISIJ Int. 1993, vol. 33 (3), pp. 420–425.

    CAS  Google Scholar 

  46. 46.

    E. Salahinejad, R. Amini, M. Marasi, T. Sritharan, M. Hadianfard: Mater. Chem. Phys. 2009, vol. 118 (1), pp. 71–75.

    CAS  Google Scholar 

  47. 47.

    E. Salahinejad, R. Amini, M. Ghaffari, M. Hadianfard: J. Alloys Compd., 505(2), pp. 584–587 2010.

    CAS  Google Scholar 

  48. 48.

    A. Zangiabadi: Ph.D. thesis, Case Western Reserve University, Cleveland, OH 2017.

  49. 49.

    Z. Nishiyama: Sci. Rep. Tohoku Univ. 1934, vol. 23, pp. 637.

    CAS  Google Scholar 

  50. 50.

    G. Wassermann: Ueber den Mechanismus der \(\alpha \)\(\gamma \)–Umwandlung des Eisens, Verlag Stahleisen, 1935.

  51. 51.

    P. D. Southwick, R. Honeycombe: Met. Sci. 1980, vol. 14, pp. 253–261.

    CAS  Google Scholar 

  52. 52.

    Y. S. Li, S. X. Li, T. Y. Zhang: J. Nucl. Mater. 2009, vol. 395 (1), pp. 120–130.

    CAS  Google Scholar 

Download references


We thank the NSF for financial support under Grant Nos. DMR-1104937 and DMR-0922938, and the Center for Electron Microscopy and Analysis (CEMAS) of the Ohio State University for access to their aberration-corrected scanning transmission electron microscopes. We are also grateful to Dr. Robert E. A. Williams and Prof. David W. McComb for their assistance and helpful comments.

Author information



Corresponding author

Correspondence to J. C. Dalton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 19, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dalton, J.C., Ernst, F. & Heuer, A.H. Low-Temperature Nitridation of 2205 Duplex Stainless Steel. Metall Mater Trans A 51, 608–617 (2020). https://doi.org/10.1007/s11661-019-05553-x

Download citation