Microstructure Formation and Tailoring of the Intermetallic TiAl Alloy Produced by Direct Laser Deposition


This study investigates the microstructure morphology in a single-track wall of Ti-47Al-2Cr-2Nb alloy produced by direct laser deposition. The as-deposited wall mainly exhibited an alternative-band microstructure containing a dendrite band and α2/γ lamellar band, which is considered to result from the influence of the heat affected zone. A tailoring method was proposed and alternative-band microstructures with various equiaxed colony fractions, and even nearly fully equiaxed colony microstructures, were successfully obtained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    J. Ding, M. Zhang, Y. Liang, Y. Ren, C. Dong, and J. Lin: Acta Mater., 2018, vol. 161, pp. 1–11.

    CAS  Article  Google Scholar 

  2. 2.

    Kothari K, Radhakrishnan R, Wereley NM (2012) Prog Aerosp Sci 55:1–16.

    Article  Google Scholar 

  3. 3.

    H. Clemens and S. Mayer: Adv. Eng. Mater., 2013, vol. 15, pp. 191–215.

    CAS  Article  Google Scholar 

  4. 4.

    A. N. D. Gasper, S. Catchpole-Smith, and A. T. Clare: J. Mater. Process. Tech., 2017, vol. 239, pp. 230–239.

    CAS  Article  Google Scholar 

  5. 5.

    X. Li, J. Fan, Y. Su, D. Liu, J. Guo and H. Fu: Intermetallics, 2012, vol. 27, pp. 38–45.

    Article  Google Scholar 

  6. 6.

    J. Fan, C. Zhang, S. Wu, H. Gao, X. Wang, J. Guo and H. Fu: Intermetallics, 2017, vol. 90, pp. 113–118.

    CAS  Article  Google Scholar 

  7. 7.

    Y. Li, L. Zhou, J. Pin, H. Chang, and F. Li: J. Alloys Comp. 2016, vol. 668, pp. 22–26.

    CAS  Article  Google Scholar 

  8. 8.

    M. C. Kim, M. H. Oh, J. H. Lee, H. Inui, M. Yamaguchi and D. M. Weea: Mater. Sci. Eng. A, 1997, vol. 239–240, pp. 570–576.

    Article  Google Scholar 

  9. 9.

    D. R. Johnson, Y. Masuda, H. Inui and M. Yamaguchi: Mater. Sci. Eng. A, 1997, vol. 239–240, pp. 577–583.

    Article  Google Scholar 

  10. 10.

    V. Fallah, M. Amoorezaei, N. Provatas, S. F. Corbin and A. Khajepour, Acta Mater., 2012, vol. 60, pp. 1633–1646.

    CAS  Article  Google Scholar 

  11. 11.

    S. M. Thompson, L. Bian, N. Shamsaei and A. Yadollahi: Addit. Manuf. 2015, vol.8, pp. 36–62.

    Article  Google Scholar 

  12. 12.

    L. E. Murr, S. M. Gaytan, A. Ceylan, E. Martinez, J. L. Martinez, D. H. Hernandez, B. I. Machado, D. A. Ramirez, F. Medina, S. Collins and R. B. Wicker: Acta Mater., 2010, vol. 58, pp. 1887–1894.

    CAS  Article  Google Scholar 

  13. 13.

    Li W, Liu J, Wen S, Wei Q, Yan C, Shi Y (2016) Mater Charact 113:125–133.

    CAS  Article  Google Scholar 

  14. 14.

    W. Li, J. Liu, Y. Zhou, S. Wen, Q. Wei, C. Yan and Y. Shi: Scr. Mater., 2016, vol. 118, pp. 13–18.

    CAS  Article  Google Scholar 

  15. 15.

    M. Thomas, T. Malot and P. Aubry: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3143–3158.

    Article  Google Scholar 

  16. 16.

    D. Srivastava, I. T. H. Chang and M. H. Loretto: Mater. Des., 2000 vol. 21, pp. 425–433.

    CAS  Article  Google Scholar 

  17. 17.

    D. Srivastava, I. T. H. Chang and M. H. Loretto: Intermetallics 2001, vol. 9, pp. 1003–1013.

    CAS  Article  Google Scholar 

  18. 18.

    H. P. Qu and H. M. Wang: Mater. Sci. Eng. A, 2007, vol. 466, pp. 187–194.

    Article  Google Scholar 

  19. 19.

    H. P. Qu, P. Li, S. Q. Zhang, A. Li and H. M. Wang: Mater. Des., 2010, vol. 31, pp. 2201–2210.

    CAS  Article  Google Scholar 

  20. 20.

    Appel F, Paul JDH, Oehring M (2011) Gamma Titanium Aluminide Alloys. Wiley, Weinheim, pp 33–40.

    Book  Google Scholar 

  21. 21.

    O. Hunziker, M. Vandyoussefi and W. Kurz: Acta Mater., 1998, vol. 46, pp. 6325–6336.

    CAS  Article  Google Scholar 

  22. 22.

    D. R. Johnson, H. Inui, S. Muto, Y. Omiya and T. Yamanaka: Acta Mater., 2006, vol. 54, pp. 1077–1085.

    CAS  Article  Google Scholar 

  23. 23.

    J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    CAS  Article  Google Scholar 

  24. 24.

    R. D. Liu, J. J. Guo, S. P. Wu, Y. Q. Su and H. Z. Fu: Mater. Sci. Eng. A, 2006, vol. 415, pp. 184–194.

    Article  Google Scholar 

  25. 25.

    D. R. Johnson, H. Inui and M. Yamaguchi: Intermetallics, 1998, vol. 6, pp. 647–652.

    CAS  Article  Google Scholar 

  26. 26.

    Y. M. Ren, X. Lin, X. Fu, H. Tan, J. Chen and W. D. Huang: Acta Mater., 2017, vol. 132, pp. 82–95.

    CAS  Article  Google Scholar 

  27. 27.

    I. N. Maliutina, H. Si-Mohand, R. Piolet, F. Missemer, A. I. Popelyukh, N. S. Belousova and P. Bertrand: Metall. Mater. Trans. A, 2016, vol. 47, pp. 378–387.

    Article  Google Scholar 

  28. 28.

    K. Lu, L. Lu and S. Suresh: Science, 2009, vol. 324, pp. 349–52.

    CAS  Article  Google Scholar 

  29. 29.

    S. R. Dey A. Hazotte and E. Bouzy: Intermetallics, 2009, vol. 17, pp. 1052–1064.

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant No. 51971145 and No. 51801126) and the National Key Research and Development Program of China (Grant No. SQ2018YFB200007).

Author information



Corresponding authors

Correspondence to Chuanwei Li or Jianfeng Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 5 August, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, C., Zhong, H. et al. Microstructure Formation and Tailoring of the Intermetallic TiAl Alloy Produced by Direct Laser Deposition. Metall Mater Trans A 51, 82–87 (2020). https://doi.org/10.1007/s11661-019-05552-y

Download citation