Stable Eutectic Formation in Spray-Formed Cast Iron

Abstract

Spray forming is an advanced casting process that produces refined and homogenous microstructure directly from the liquid metal regardless of the alloy system. However, the microstructure evolution during spray forming is complex because the process comprises two sequential steps with very different cooling rates, i.e., atomization and deposition. It is well known that the microstructure of cast irons is highly dependent on the chemical composition and the cooling rate imposed to the liquid. In order to better understand the microstructural evolution during solidification by spray forming, this study investigated the solidification of two cast irons with different stable–metastable eutectic temperature interval (ΔTES−M), 30 K and 17 K. The microstructures of both overspray powders presented a dendritic array of austenite with cementite in the inter-dendritic spacing. Despite the high cooling rates imposed to the alloys during the atomization step, the final microstructure was defined by the cooling conditions prevailing during the final step of deposit solidification and stable eutectic was formed. This was ascribed to the dynamic process involving heating and remelting of the low melting temperature phases present in the droplets that arrives completely or partially solid in the deposition zone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    A. P. de BribeanGuerra, N. Ellendt, V. Uhlenwinkel, P. S. C. P. da Silva, and C. Bolfarini: Materwiss. Werksttech., 2014, vol. 45, pp. 568–73.

    Article  Google Scholar 

  2. 2.

    C. Cui, A. Schulz, K. Schimanski, and H.-W. Zoch: J. Mater. Process. Technol., 2009, vol. 209, pp. 5220–28.

    CAS  Article  Google Scholar 

  3. 3.

    L. G. Hou, C. Cui, and J. S. Zhang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6400–6412.

    Article  Google Scholar 

  4. 4.

    V. C. Srivastava, R. K. Mandal, and S. N. Ojha: J. Mater. Sci. Lett., 2001, vol. 20, pp. 27–29.

    CAS  Article  Google Scholar 

  5. 5.

    P. Shukla, R.K. Mandal, and S.N. Ojha: Mater. Sci. Eng. A, 2001, vol. 304–306, pp. 583–86.

    Article  Google Scholar 

  6. 6.

    E. M. Mazzer, C. R. M. Afonso, M. Galano, C. S. Kiminami, and C. Bolfarini: J. Alloys Compd., 2013, vol. 579, pp. 169–73.

    CAS  Article  Google Scholar 

  7. 7.

    P.S. Grant, W.T Kim, and B. Cantor: Mater. Sci. Eng. A, 1991, vol. 134, pp. 1111–14.

    Article  Google Scholar 

  8. 8.

    C. Cui, U. Fritsching, A. Schulz, R. Tinscher, K. Bauckhage, and P. Mayr: J. Mater. Process. Technol., 2005, vol. 168, pp. 496–504.

    CAS  Article  Google Scholar 

  9. 9.

    C. Cui, U. Fritsching, A. Schulz, K. Bauckhage, and P. Mayr: Mater. Sci. Eng. A, 2004, vol. 383, pp. 158–65.

    Article  Google Scholar 

  10. 10.

    R. A. Mesquita and C. A. Barbosa: Mater. Sci. Eng. A, 2004, vol. 383, pp. 87–95.

    Article  Google Scholar 

  11. 11.

    G. Zhang, H. Yuan, D. Jiao, Z. Li, Y. Zhang, and Z. Liu: Mater. Sci. Eng. A, 2012, vol. 558, pp. 566–71.

    CAS  Article  Google Scholar 

  12. 12.

    A. Schulz, V. Uhlenwinkel, C. Escher, R. Kohlmann, A. Kulmburg, M. C. Montero, R. Rabitsch, W. Schützenhöfer, D. Stocchi, and D. Viale: Mater. Sci. Eng. A, 2008, vol. 477, pp. 69–79.

    Article  Google Scholar 

  13. 13.

    A. Schulz, V. Uhlenwinkel, C. Bertrand, R. Kohlmann, A. Kulmburg, A. Oldewurtel, R. Schneider, and D. Viale: Mater. Sci. Eng. A, 2004, vol. 383, pp. 58–68.

    Article  Google Scholar 

  14. 14.

    J. Mi and P.S. Grant: Acta Mater., 2008, vol. 56, pp. 1588–96.

    CAS  Article  Google Scholar 

  15. 15.

    J. Mi and P.S. Grant: Acta Mater., 2008, vol. 56, pp. 1597–1608.

    CAS  Article  Google Scholar 

  16. 16.

    R. L. Kennedy, R. M. F. Jones, R. M. Davis, M. G. Benz, and W. T. Carter: Vacuum, 1996, vol. 47, pp. 819–24.

    CAS  Article  Google Scholar 

  17. 17.

    A.H. Kasama, A.J. Mourisco, C.S. Kiminami, W.J. Botta, and C. Bolfarini: Mater. Sci. Eng. A, 2004, vol. 375-377, pp. 589–94.

    Article  Google Scholar 

  18. 18.

    D.N. Hanlon, W.M. Rainforth, and C.M. Sellars: Wear, 1999, vol. 225–229, pp. 587–99.

    Article  Google Scholar 

  19. 19.

    T.T. Matsuo, C.S. Kiminami, W.J. Botta, and C. Bolfarini: Wear, 2005, vol. 259, pp. 445–52.

    CAS  Article  Google Scholar 

  20. 20.

    M. L T. Guo, C.-H. Chiang, and C. Y.A. Tsao: Mater. Sci. Eng. A, 2002, vol. 326, pp. 1–10.

    Article  Google Scholar 

  21. 21.

    X. Yi and S. Qin: Adv. Mater. Res., 2011, vol. 337, pp. 434–38.

    CAS  Article  Google Scholar 

  22. 22.

    V.C Srivastava, A. Schneider, V. Uhlenwinkel, S.N Ojha, and K. Bauckhage: J. Mater. Process. Technol., 2004, vol. 147, pp. 174–80.

    CAS  Article  Google Scholar 

  23. 23.

    V.C. Srivastava, E. Huttunen-Saarivirta, C. Cui, V. Uhlenwinkel, A. Schulz, and N.K. Mukhopadhyay: J. Alloys Compd., 2014, vol. 597, pp. 258–68.

    CAS  Article  Google Scholar 

  24. 24.

    G. Zepon, C. S. Kiminami, W. J. Botta, and C. Bolfarini: Mater. Res., 2013, vol. 16, pp. 642–46.

    Article  Google Scholar 

  25. 25.

    G. Zepon, A.R.C. Nascimento, A.H. Kasama, R.P. Nogueira, C.S. Kiminami, W.J. Botta, and C. Bolfarini: Mater. Des., 2015, vol. 83, pp. 214–23.

    CAS  Article  Google Scholar 

  26. 26.

    P.S. Grant: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1520–29.

    CAS  Article  Google Scholar 

  27. 27.

    P. S. Grant: Prog. Mater. Sci., 1995, vol. 39, pp. 497–545.

    CAS  Article  Google Scholar 

  28. 28.

    M. Krauss, D. Bergmann, U. Fritsching, and K. Bauckhage: Mater. Sci. Eng. A, 2002, vol. 326, pp. 154–64.

    Article  Google Scholar 

  29. 29.

    G. Zepon, N. Ellendt, V. Uhlenwinkel, and C. Bolfarini: Metall. Mater. Trans. A, 2016, vol. 47, pp. 842–51.

    Article  Google Scholar 

  30. 30.

    D. M. Stefanescu: Science and Engineering of Casting Solidification, 2nd ed., Springer US, Boston, MA, 2009, 413 pp.

    Google Scholar 

  31. 31.

    D. M. Stefanescu, S. Katz: in ASM Handb. Vol. 15 Casting, ASM International (OH), 2008, pp. 41–55.

    Google Scholar 

  32. 32.

    H. L. Lukas, S. G. Fries, and B. Sundman: Computational Thermodynamics, The Calphad Method, 1st ed., Cambridge University Press, Cambridge, 2007, 324 pp.

    Book  Google Scholar 

  33. 33.

    O. Oloyede, R. F. Cochrane, and A. M. Mullis: J. Alloys Compd., 2017, vol. 707, pp. 347–50.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian research-funding agencies: Fundação de Amparo à Pesquisa do Estado de São Paulo/FAPESP (Grant Nos. 2013/05987-8 and 2016/19326-1), Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil/ CNPq, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, for the financial support. Additionally, the Laboratory of Structure Characterization at the Department of Materials Engineering at the Federal University of São Carlos (LCE/DEMa/UFSCar) for the microscopy facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guilherme Zepon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 27, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 210 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zepon, G., Fernandes, J.F.M., Otani, L.B. et al. Stable Eutectic Formation in Spray-Formed Cast Iron. Metall Mater Trans A 51, 798–808 (2020). https://doi.org/10.1007/s11661-019-05549-7

Download citation