Growth and Properties of TiN/Al2O3/Ti(C, N)/TiN Multilayer CVD Coatings on Ti (C, N)-Based Cermet Substrates with Ni, Co and Fe Binders

Abstract

In this article, Ti (C, N)-based cermets with Ni, Co and Fe binder phase were manufactured by traditional powder metallurgical techniques. The multilayer TiN/Al2O3/Ti (C, N)/TiN CVD (chemical vapor deposition) coatings were deposited on the three kind of cermets, and the growth and properties of the coatings were studied. The results show that massive cores-incomplete rims are found in the cermet-Ni (cermets with Ni binder) and cermet-Fe (cermets with Fe binder), while in the cermet-Co (cermets with Co binder), the small black cores are surrounded by a complete and well-developed rim phase. When the TiN coating is deposited on the cermets with cores-incomplete rims, the Ti and N atoms stack on the face-centered cubic structure of Ti (C, N) first, and epitaxial growth of the TiN crystals takes place. The epitaxial growth is attributed to the same preferred orientation (2 0 0) of the TiN layers to the Ti (C, N) of the substrate. While on the cermets with cores-complete rims, (Mo, Ti) (C, N) solid solution and binder phase (Ni/Co/Fe), which has a distinct crystal structure or lattice parameters, TiN grains nucleate first and then grow. In this case, the TiN coatings show a (1 1 1)-oriented structure. Dense and thin coatings grow on the cermets-Co. The adhesion of the multilayer coatings to the substrate increases in the order cermets-Fe, cermets-Ni and cermets-Co. In addition, the coating on the cermets-Co has the lowest COF (coefficient of friction) as the thin TiN layer (0.7 μm) is propitious to diffusion of Al and O, and a protective transfer layer is formed by AlOx.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    C. Park, J. Kim, S. Kang, J. Alloys Compd. 2018, vol. 766, pp. 564-571.

    CAS  Article  Google Scholar 

  2. 2.

    H. Chien, M.C. Gao, H.M. Miller, G.S. Rohrer, Z. Ban, P. Prichard, Y. Liu, Int. J. Refract. Met. Hard Mater. 2009, vol. 27, pp. 458–464.

    CAS  Article  Google Scholar 

  3. 3.

    [3]Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo, Appl. Surf. Sci. 2005, vol. 242, pp. 177–184.

    CAS  Article  Google Scholar 

  4. 4.

    [4]D.M. Devia, E.R. Parra, P.J. Arango, Appl. Surf. Sci. 2011, vol. 258, pp. 1164–1174.

    CAS  Article  Google Scholar 

  5. 5.

    X.M. Li, Y. Han, Appl. Surf. Sci. 2008, vol. 254, pp. 6350–6357.

    CAS  Article  Google Scholar 

  6. 6.

    S. Ruppi, Int. J. Refract. Metals Hard Mater. 2005, vol. 23, pp. 306–316.

    CAS  Article  Google Scholar 

  7. 7.

    S. Acharya, M. Debata, T.S. Acharya, P.P. Acharya, S.K. Singh, J. Alloys Compd. 2016, vol. 685, pp. 905-912.

    CAS  Article  Google Scholar 

  8. 8.

    M. Chen, Q. Zhuang, N. Lin, Y.H. He, J. Alloys Compd. 2017, vol. 701, pp. 408-415.

    CAS  Article  Google Scholar 

  9. 9.

    M.K. Lee, J.H. Kim, J. Alloys Compd. 2017, vol. 698, pp. 39-43.

    CAS  Article  Google Scholar 

  10. 10.

    H Yu, Y Liu, Y Jin, J Ye, Int. J.Refract. Met. Hard Mater. 2011, vol. 29, pp. 586-590.

    CAS  Article  Google Scholar 

  11. 11.

    P. Alvaredo, C. Abajo, S.A. Tsipas, E. Gordo, J. Alloys Compd. 2014, vol. 591, pp. 72-79.

    CAS  Article  Google Scholar 

  12. 12.

    J.M. Córdoba, E. Chicardi, F.J. Gotor, J. Alloys Comp. 2013, vol. 559, pp. 34–38.

    Article  Google Scholar 

  13. 13.

    A. Demoly, W. Lengauer, C. Veitsch, K. Rabitsch, Int. J. Refract. Met. Hard Mater. 2011, vol. 29, pp. 716–723.

    CAS  Article  Google Scholar 

  14. 14.

    Q.Q. Yang, W.H. Xiong, M. Zhang, B. Huang, S. Chen, J. Alloys Comp. 2015, vol. 636, pp. 270–274.

    CAS  Article  Google Scholar 

  15. 15.

    E. Chicardi, Y. Torres, M.J. Sayagues, V. Medri, C. Melandri, J.M. Cordoba, F.J. Gotor, Chem. Eng. J. 2015, vol. 267, pp. 297–305.

    CAS  Article  Google Scholar 

  16. 16.

    M. Naidoo, O. Johnson, I. Sigalas, M. Herrmann, Int. J. Refract. Met. Hard Mater. 2014, vol. 42, pp. 97–102.

    CAS  Article  Google Scholar 

  17. 17.

    S.G. Huang, L. Li, O. Vander-Biest, J. Vleugels, J. Alloys Compd. 2008, vol. 464, pp. 205-211.

    CAS  Article  Google Scholar 

  18. 18.

    Q.Z. Xu, X. Ai, J. Zhao, F. Gong, J.M. Pang, Y.T. Wang, J. Alloy Compd. 2015, vol. 644, pp. 633-672.

    Google Scholar 

  19. 19.

    L.V. Fieandt, M. Fallqvist, T. Larsson, E. Lindahl, M. Boman, Tribol, Int. 2018, vol. 119, pp. 593-599.

    Article  Google Scholar 

  20. 20.

    L. von Fieandt, K. Johansson, T. Larsson, M. Boman, E. Lindahl, Thin Solid Film 2018, vol. 645, pp. 19-26.

    Article  Google Scholar 

  21. 21.

    H. Du, J. Xiong, H.B. Zhao, Y.M. Wu, W.C. Wan, L.L. Wang, Appl. Surf. Sci. 2014, vol. 292, pp. 699-694.

    Google Scholar 

  22. 22.

    S. Sveen, J.M. Andersson, R. M. Saoubi, M. Olsson, Wear. 2013, vol. 308, pp. 133–141.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The study is financially supported by the National Natural Science Foundation of China (Nos. 51634006, 51575368). The authors thank the Chengdu Mingwu Technology Corp., Ltd., of China, Chengdu Tool Research Institute Co., Ltd., of China. We also appreciate Wang Hui from the Analytical & Testing Center of Sichuan University for her help with SEM characterization. Thanks are also extended to the National Engineering Research Center for Biomaterials of Sichuan University for the testing of the samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ji Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 20, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xiong, J., Guo, Z. et al. Growth and Properties of TiN/Al2O3/Ti(C, N)/TiN Multilayer CVD Coatings on Ti (C, N)-Based Cermet Substrates with Ni, Co and Fe Binders. Metall Mater Trans A 51, 863–873 (2020). https://doi.org/10.1007/s11661-019-05547-9

Download citation