Effects of Er and Zr Additions on the As-Cast Microstructure and on the Solution-Heat-Treatment Response of Innovative Al-Si-Mg-Based Alloys

Abstract

The microstructure of Al-Si-Mg alloys strongly depends on their chemical composition and the heat treatment they undergo during production. The influence of solution heat treatment (SHT) and the addition of Er and Zr on the microstructure of gravity-cast A356 (Al-7Si-0.4Mg) were examined. The reference as-cast microstructure is characterized by the grain size and morphology of eutectic Si, as well as the morphology, area fraction, and chemical composition of the intermetallic compounds. The morphology of eutectic Si is unstable during SHT; the evolution mechanisms can be described using thermodynamic and kinetic models and have been validated using optical and scanning electron microscope (SEM) micrographs. The effect of high-temperature exposure during SHT, on the other hand, plays a minor role on the quantity and morphology of the intermetallic compounds, as demonstrated by optical and SEM micrographs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    I.J. Polmear: Light Alloys: from Traditional Alloys to Nanocrystals, Butterworth-Heinemann, Oxford, United Kingdom, 2005.

    Google Scholar 

  2. 2.

    K.T. Kashyap, S. Murali, K.S. Raman, and K.S.S. Murthy: Mater. Sci. Technol., 1993, vol. 9, pp. 189–204.

    CAS  Google Scholar 

  3. 3.

    R. Chen, Y. Shio, Y. Xub, and C. Liu: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 1645–52.

    CAS  Google Scholar 

  4. 4.

    K.T. Akhil, S. Arul, and R. Sellamuthu: Proc. Mater. Sci., 2014, vol. 5, pp. 362–68.

    CAS  Google Scholar 

  5. 5.

    Q.G. Wang: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2887–99.

    CAS  Google Scholar 

  6. 6.

    L.Y. Zhang, Y.H. Jiang, Z. Ma, S.F. Shan, Y.Z. Jia, C.Z. Fan, and W.K. Wang: J. Mater. Process. Technol., 2008, vol. 207, pp. 107–11.

    CAS  Google Scholar 

  7. 7.

    M.A. Moustafa: J. Mater. Process. Technol., 2009, vol. 209, pp. 605–10.

    CAS  Google Scholar 

  8. 8.

    C. Do-Lee: Mater. Sci. Eng. A, 2007, vol. 464, pp. 249–54.

    Google Scholar 

  9. 9.

    C.H. Càceres: Scripta Metall. Mater., 1995, vol. 32, pp. 1851–56.

    Google Scholar 

  10. 10.

    Q.G. Wang and C.J. Davidson: J. Mater. Sci., 2001, vol. 36, pp. 739–50.

    CAS  Google Scholar 

  11. 11.

    M. Zhu, Z. Jian, G. Yang, and Y. Zhou: Mater. Design, 2012, vol. 36, pp. 243–49.

    CAS  Google Scholar 

  12. 12.

    E. Sjölander and S. Seifeddine: J. Mater. Process. Technol., 2010, vol. 210, pp. 1249–59.

    Google Scholar 

  13. 13.

    F.H. Samuel: J. Mater. Sci., 1998, vol. 33, pp. 2283–97.

    CAS  Google Scholar 

  14. 14.

    M.A. Moustafa, F.H. Samuel, and H.W. Doty: J. Mater. Sci., 2003, vol. 38, pp. 4507–22.

    CAS  Google Scholar 

  15. 15.

    ASTM Standards (2012) Standard practice for heat treatment of aluminum-alloy castings from all processes. ASTM, Philadelphia.

    Google Scholar 

  16. 16.

    G. Sharma, R.V. Ramanujan, and G.P. Tiwari: Acta Mater., 2000, vol. 48, pp. 875–89.

    CAS  Google Scholar 

  17. 17.

    J.C.M. Kampe, T.H. Courtney, and Y. Leng: Acta Metall., 1989, vol. 37, pp. 1735–45.

    CAS  Google Scholar 

  18. 18.

    T.H. Courtney and J.C.M. Kampe: Acta Metall., 1989, vol. 37, pp. 1747–58.

    CAS  Google Scholar 

  19. 19.

    E. Ogris, A. Wahlen, H. Luechinger, and P.J. Uggowitzer: J. Light Met., 2002, vol. 2, pp. 263–69.

    Google Scholar 

  20. 20.

    J.A. Taylor, D.H. St John, J. Barresi, and M.J. Couper: Mater. Sci. Forum, 2000, vol. 331, pp. 277–82.

  21. 21.

    P.A. Rometsch, L. Arnberg, and D.L. Zhang: Int. J. Cast Met. Res., 2016, vol. 12, pp. 1–8.

    Google Scholar 

  22. 22.

    J. Hernandez-Sandoval, G.H. Garza-Elizondo, A.M. Samuel, S. Valtiierra, and F.H. Samuel: Mater. Des., 2014, vol. 58, pp. 89–101.

    CAS  Google Scholar 

  23. 23.

    Y.-C. Tsai, C.-Y. Chou, S.-L. Lee, C.-K. Lin, J.-C. Lin, and S.W. Lim: J. Alloys Compds., 2009, vol. 487, pp. 157–62.

    CAS  Google Scholar 

  24. 24.

    A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, and L. Lu: Mater. Sci. Eng. A, 2005, vols. 413–414, pp. 243–48.

    Google Scholar 

  25. 25.

    A. Mazahery and M.O. Shabani: J. Mater., 2014, vol. 66, pp. 726–38.

    CAS  Google Scholar 

  26. 26.

    J.H. Li, X.D. Wang, T.H. Ludwig, Y. Tsunekawa, L. Arnberg, J.Z. Jiang, and P. Schumacher: Acta Mater., 2015, vol. 84, pp. 153–63.

    CAS  Google Scholar 

  27. 27.

    M. Colombo, E. Gariboldi, and A. Morri: J. Alloys Compds., 2017, vol. 708, pp. 1234–44.

    CAS  Google Scholar 

  28. 28.

    M. Colombo, E. Gariboldi, and A. Morri: Mater. Sci. Eng. A, 2018, vol. 713, pp. 151–60.

    CAS  Google Scholar 

  29. 29.

    L. Ceschini, A. Morri, A. Morri, A. Gamberini, and S. Messieri: Mater. Des., 2009, vol. 30, pp. 4525–41.

    CAS  Google Scholar 

  30. 30.

    Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto: Acta Mater., 2015, vol. 84, pp. 292–304.

    CAS  Google Scholar 

  31. 31.

    P. Schumacher and A.L. Greer: Mater. Sci. Eng. A, 1994, vol. 178, pp. 309–13.

    CAS  Google Scholar 

  32. 32.

    Y. Wang, L. Zhou, and Z. Fan: Light Metals, TMS, Warrendale, PA, 2016, pp. 725–29.

    Google Scholar 

  33. 33.

    Z. Chen, H. Kang, G. Fan, J. Li, Y. Lu, J. Jie, Y. Zhang, T. Li, X. Jian, and T. Wang: Acta Mater., 2016, vol. 120, pp. 168–78.

    CAS  Google Scholar 

  34. 34.

    H. Okamoto: J. Phase Equilibria, 1993, vol. 14, pp. 120–21.

    Google Scholar 

  35. 35.

    P.S. Mohanty and J.E. Gruzleski: Acta Mater., 1996, vol. 44, pp. 3749–60.

    CAS  Google Scholar 

  36. 36.

    M.V. Karpets, Y.V. Milman, O.M. Barabash, N.P. Korzhova, O.N. Senkov, D.B. Miracle, T.N. Legkaya, and I.V. Voskoboynik: Intermetallics, 2003, vol. 11, pp. 241–49.

    CAS  Google Scholar 

  37. 37.

    S. Nafisi, R. Ghomashchi, and H. Vali: Mater. Charact., 2008, vol. 59, pp. 1466–73.

    CAS  Google Scholar 

  38. 38.

    A.K. Dahle, K. Nogita, J.W. Zindel, S.D. McDonald, and L.M. Hogan: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 949–60.

    CAS  Google Scholar 

  39. 39.

    M.M. Makhlouf and H.V. Guthy: J. Light Met., 2001, vol. 1, pp. 199–218.

    Google Scholar 

  40. 40.

    J.H. Li, M. Albu, F. Hofer, and P. Schumacher: Acta Mater., 2015, vol. 83, pp. 187–202.

    CAS  Google Scholar 

  41. 41.

    T. Hosch and R.E. Napolitano: Mater. Sci. Eng. A, 2010, vol. 528, pp. 226–32.

    Google Scholar 

  42. 42.

    H.P. Stuewe and O. Kolednik: Acta Metall., 1988, vol. 36, pp. 1705–08.

    Google Scholar 

  43. 43.

    H.V. Guthy: Evolution of the Eutectic Microstructure in Chemically Modified and Unmodified Aluminum Silicon Alloys, Worcester Polytechnic Institute, Worcester, MA, 2002.

    Google Scholar 

  44. 44.

    S. Fujikawa, K. Hirano, and Y. Fukushima: Metall. Trans., 1974, vol. 5, pp. 1811–15.

    Google Scholar 

  45. 45.

    J.L. Murray and A.J. McAlister: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 74–84.

    CAS  Google Scholar 

  46. 46.

    L.J. Colley, M.A. Wells, and W.J. Poole: Can. Metall. Q., 2014, vol. 53, pp. 125–37.

    CAS  Google Scholar 

  47. 47.

    Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou: J. Alloys Compds., 2014, vol. 610, pp. 27–34.

    CAS  Google Scholar 

  48. 48.

    S.J. Rothman, N.L. Peterson, L.J. Nowicki, and L.C. Robinson: Phys. Stat. Solidi (b), 1974, vol. 9, pp. 29–33.

    Google Scholar 

  49. 49.

    H. Okamoto: J. Phase Equilibria Diffus., 2011, vol. 32, pp. 261–62.

    CAS  Google Scholar 

  50. 50.

    H. Okamoto: J. Phase Equilibria, 2002, vol. 23, pp. 455–56.

    CAS  Google Scholar 

  51. 51.

    K. Hirano and S. Fujikawa: J. Nucl. Mater., 1978, vol. 69, pp. 564–66.

    Google Scholar 

  52. 52.

    S. Fujikawa, K. Hirano, and Y. Fukushima: Metall. Trans. A, 1978, vol. 9A, pp. 1811–15.

    CAS  Google Scholar 

  53. 53.

    S. Mantl, W. Petry, K. Schroeder, and G. Vogl: Phys. Rev. B, 1983, vol. 27, pp. 5313–31.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Colombo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 2, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Colombo, M., Buzolin, R.H., Gariboldi, E. et al. Effects of Er and Zr Additions on the As-Cast Microstructure and on the Solution-Heat-Treatment Response of Innovative Al-Si-Mg-Based Alloys. Metall Mater Trans A 51, 1000–1011 (2020). https://doi.org/10.1007/s11661-019-05544-y

Download citation