Effects of Stress on Martensite Transformation During Continuous Cooling and Mechanical Response of a Medium-Carbon High-Strength Steel


The effects of stress on martensite transformation at different continuous cooling rates and the mechanical response of a medium-carbon high-strength steel were investigated by the metallographic method, dilatometry, and tensile tests. The results show that the microstructure consisted of martensite and retained austenite (RA) regardless of whether stress was applied. The martensite start temperature increased by stress due to additional mechanical driving force. The amount of martensite increased, while the amount of RA decreased at the same cooling rate by applying stress. In addition, the martensite laths were refined and variant selection of martensite orientation was observed by applying stress. Moreover, the tensile strength increased from about 1470 to 2170 MPa by applying stress because of more martensite and the fraction of low-angle grain boundaries. The strength improvement with the increase of cooling rate under stress was larger than that in the specimens without stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    F. Maresca, V.G. Kouznetsova, M.G.D. Geers, and W.A. Curtin: Acta Mater., 2018, vol. 156, pp. 463–78.

    CAS  Article  Google Scholar 

  2. 2.

    S. Sharma, B.R. Kumar, B.P. Kashyap, and N. Prabhu: Mater. Sci. Eng. A, 2018, vol. 725, pp. 215–27.

    CAS  Article  Google Scholar 

  3. 3.

    J.Y. Tian, G. Xu, Z.Y. Jiang, H.J. Hu, Q. Yuan, and X.L. Wan: Metall. Mater. Int., 2019. https://doi.org/10.1007/s12540-019-00370-8.

    Article  Google Scholar 

  4. 4.

    H.S. Yang and H.K.D.H. Bhadeshia: Scripta Mater., 2009, vol. 60, pp. 493–95.

    CAS  Article  Google Scholar 

  5. 5.

    X. Li, L. Chen, Y. Zhao, X. Yuan, and M.R.D. Kumar: Mater. Sci. Eng. A, 2018, vol. 715, pp. 257–65.

    CAS  Article  Google Scholar 

  6. 6.

    J. Huang and Z. Xu: Mater. Sci. Eng. A, 2006, vol. 438, pp. 254–57.

    Article  Google Scholar 

  7. 7.

    G.S. Ansell, P.J. Brofman, T.J. Nichol, and G. Judd: Int. Conf. on Martensitic Transformations ICOMAT ’79, G.B. Olson and M. Cohen, eds., 1979, pp. 350–55.

  8. 8.

    M. Nikravesh, M. Naderi, and G.H. Akbari: Mater. Sci. Eng. A, 2012, vol. 540, pp. 24–29.

    CAS  Article  Google Scholar 

  9. 9.

    K.W. Andrews: Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  10. 10.

    C. Capdevila, F.G. Caballero, and C. García De Andrés: Mater. Sci. Technol., 2003, vol. 19, pp. 581–86.

    CAS  Article  Google Scholar 

  11. 11.

    D.J.C. Mackay: Neur. Comput., 2014, vol. 4, pp. 448–72.

    Article  Google Scholar 

  12. 12.

    G. Ghosh and G.B. Olson: Acta Mater., 2002, vol. 50, pp. 2655–75.

    CAS  Article  Google Scholar 

  13. 13.

    J. Wang, P.J.V.D. Wolk, and S.V.D. Zwaag: J. Mater. Sci., 2000, vol. 35, pp. 4393–4404.

    CAS  Article  Google Scholar 

  14. 14.

    G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.

    CAS  Google Scholar 

  15. 15.

    S. Chatterjee, H.S. Wang, J.R. Yang, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2006, vol. 22, pp. 641–44.

    CAS  Article  Google Scholar 

  16. 16.

    M. Zhang, Y.H. Wang, C.L. Zheng, F.C. Zhang, and T.S. Wang: Mater. Sci. Eng. A, 2014, vol. 596, pp. 9–14.

    CAS  Article  Google Scholar 

  17. 17.

    M. Maalekian, E. Kozeschnik, S. Chatterjee, and H.K.D.H. Bhadeshia: J. Met. Sci., 2007, vol. 23, pp. 610–12.

    CAS  Google Scholar 

  18. 18.

    C. Zhang, D. Cai, Y. Wang, M. Liu, B. Liao, and Y. Fan: Mater. Charact., 2008, vol. 59, pp. 1638–42.

    CAS  Article  Google Scholar 

  19. 19.

    S.H.M. Anijdan, A. Rezaeian, and S. Yue: Mater Charact., 2012, vol. 63, pp. 27–38.

    Article  Google Scholar 

  20. 20.

    S. Masoud and D.S. Mersagh: J. Manuf. Processes, 2018, vol. 34, pp. 313–28.

    Article  Google Scholar 

  21. 21.

    M Wang, G Xu, L Wang, YW Xu, ZL Xue (2017) J Wuhan Univ Technol, 32, 186–89.

    Article  Google Scholar 

  22. 22.

    C.Y. Wang, J. Shi, W.Q. Cao, and H. Dong: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3442–49.

    Article  Google Scholar 

  23. 23.

    F.R. Xiao, L. Bo, Y.Y. Shan, and K. Yang: Mater Charact., 2005, vol. 54, pp. 417–22.

    CAS  Article  Google Scholar 

  24. 24.

    Y. Yan, G.L. Jiang, T.F. Guo, L.L. Zhang, and S.K. Wei: Heat Treat. Met., 2018, vol. 43, pp. 199–204 (in Chinese).

    Google Scholar 

  25. 25.

    B.B. He, W. Xu, and M.X. Huang: Mater. Sci. Eng. A, 2014, vol. 609, pp. 141–46.

    CAS  Article  Google Scholar 

  26. 26.

    F. Marketz and F.D. Fischer: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 267–78.

    CAS  Article  Google Scholar 

  27. 27.

    E.S. Machlin and M. Cohen: JOM, 1951, vol. 3, pp. 746–54.

    CAS  Article  Google Scholar 

  28. 28.

    S.J. Lee and Y.K. Lee: Scripta Mater., 2009, vol. 60, pp. 1016–19.

    CAS  Article  Google Scholar 

  29. 29.

    S. Kundu, A.K. Verma, and V. Sharma: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2552–65.

    Article  Google Scholar 

  30. 30.

    S. Kundu and H.K.D.H. Bhadeshia: Scripta Mater., 2007, vol. 57, pp. 869–72.

    CAS  Article  Google Scholar 

  31. 31.

    G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara: J. Alloys Compds., 2013, vol. 577, pp. 528–32.

    Article  Google Scholar 

  32. 32.

    Z.Y. Tang, J.N. Huang, H. Ding, Z.H. Cai, and R.D.K. Misra: Mater. Sci. Eng. A, 2018, vol. 724, pp. 95–102.

    CAS  Article  Google Scholar 

  33. 33.

    L. Qi, A.G. Khachaturyan, and J.W. Morris: Acta Mater., 2014, vol. 76, pp. 23–39.

    CAS  Article  Google Scholar 

  34. 34.

    B.B. He and M.X. Huang: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 688–94.

    Article  Google Scholar 

  35. 35.

    M. Sabzil, M. Farzam (2019) Mater Res Expr 6: 1–15.

    Google Scholar 

  36. 36.

    S.H.M. Anijdan and S. Yue: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1140–62.

    Article  Google Scholar 

  37. 37.

    S.C. Li, C.Y. Guo, L.L. Hao, Y.L. Kang, and Y.G. An: Mater. Sci. Eng. A, 2019, vol. 759, pp. 624–32.

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 51874216 and 51704217), the Major Projects of Technology Innovation of Hubei Province (Grant No. 2017AAA116), and the Hebei Joint Research Fund for Iron and Steel (Grant No. E2018318013).

Author information



Corresponding author

Correspondence to Guang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 27, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Xu, G., Chen, G. et al. Effects of Stress on Martensite Transformation During Continuous Cooling and Mechanical Response of a Medium-Carbon High-Strength Steel. Metall Mater Trans A 51, 597–607 (2020). https://doi.org/10.1007/s11661-019-05543-z

Download citation