Skip to main content
Log in

Study of Residual Stresses in Additively Manufactured Ti-6Al-4V by Neutron Diffraction Measurements

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Neutron diffraction is a powerful non-destructive volumetric evaluation method for the analysis of the internal stress state in components processed by laser powder bed fusion (LPBF). High cooling rates and heterogeneous distribution of temperature during additive manufacturing lead to large residual stress fields. Residual stresses developed during the building process have unquestionably an important influence on the mechanical performance and potentially lead to delamination from the support structures, shape distortion but also crack formation. In the present work, neutron measurements have been carried out on cube-shaped samples prepared by LPBF from a Ti-6Al-4V powder bed. A series of miscellaneous positions (center, edge, and corner) over three different depths (close substrate, middle, and close surface) have been analyzed by neutron diffraction so as to systematically characterize the full stress tensor. The influence of shear stresses and second-order residual stresses on the stress tensor analysis is also discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frazier E (2014) J Mater Eng Perform 23:1917–1928.

    Article  Google Scholar 

  2. Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL (2015) Appl Phys Rev 2:1-21.

    Article  Google Scholar 

  3. L.-C. Zhang, H. Attar: Adv. Eng. Mater., 2016, vol. 18, pp. 463-475.

    Article  CAS  Google Scholar 

  4. W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, H. Miura: Powder Technol., 2018, vol. 331, pp. 74-97.

    Article  CAS  Google Scholar 

  5. J.-P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers: J. Mater. Process. Tech., 2004, vol. 149, pp. 616-622.

    Article  CAS  Google Scholar 

  6. D.W. Brown, J.D. Bernardin, J.S. Carpenter, B. Clausen, D. Spernjak, J.M. Thompson: Mater. Sci. Eng. A, 2016, vol. 678, pp. 291–298.

    Article  CAS  Google Scholar 

  7. M. Awd, J. Tenkamp, M. Hirtler, S. Siddique, M. Bambach, F. Walther: Materials, 2018, vol. 11, pp. 1-17.

    Google Scholar 

  8. B. Vrancken: Study of residual stresses in selective laser melting, Faculty of engineering Science. PhD Dissertation, University of Leuven, 2016.

  9. P. Mercelis, J.-P. Kruth: Rapid Prototyping J., 2006, vol. 12, pp. 254–265.

    Article  Google Scholar 

  10. H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, D. Trimble: Int. J. Mach. Tool. Manu., 2018, vol. 128, pp. 1–20.

    Article  Google Scholar 

  11. M. B. Prime: J. Eng. Mater. Tech., 2000, vol. 123, pp. 162-168.

    Article  Google Scholar 

  12. ASTM Standard E837 REV A: Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, ASTM International, West Conshohocken, PA, 2013.

  13. M.B. Prime: Appl. Mech. Rev., 1999, vol. 52, pp. 75-96.

    Article  Google Scholar 

  14. Y. Liu, Y. Yang, D. Wang: Int. J. Adv. Manuf. Tech., 2016, vol. 87, pp. 647–656.

    Article  Google Scholar 

  15. L.S. Anderson, A.M. Venter, B. Vrancken, D. Marais, J. Van Humbeeck, T.H. Becker: Mater. Res. Proc., 2018, vol. 4, pp. 73-78.

    Article  CAS  Google Scholar 

  16. V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, Amsterdam, 1997.

    Google Scholar 

  17. D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, S. Branchu: Acta Mater., 2013, vol. 61, pp. 5779-5790.

    Article  CAS  Google Scholar 

  18. L. Pintschovius, V. Jung, E. Macherauch, O. Vohringer: Mater. Sci. Eng., 1983, vol. 61, pp. 43-50.

    Article  Google Scholar 

  19. L. Steven Anderson: Evaluating measurement techniques: establishing a testing framework for residual stress in selective laser melted Ti-6Al-4V, Faculty of Engineering PhD Dissertation, University of Stellenbosch, 2017.

  20. A. Kromm, S. Cabeza, T. Mishurova, N. Nadammal, T. Thiede, G. Bruno: Mater. Res. Proc., 2018, vol. 6, pp. 259-264.

    Article  CAS  Google Scholar 

  21. V.-D. Le, E. Pessard, F. Morel, F. Edy: Eng. Fract. Mech., 2019, vol. 214, pp. 410-426.

    Article  Google Scholar 

  22. He BB (2018) Two-dimensional X-ray diffraction. Wiley, Hoboken, pp 292–293

    Book  Google Scholar 

  23. [23] P. J. Withers, M. Preuss, A. Steuwer, J. W. L. Pang: J. Appl. Cryst., 2007, vol. 40, pp. 891-904.

    Article  CAS  Google Scholar 

  24. H. Dölle, V. Hauk: Z. Metalkde, 1978, vol. 69, pp. 410-417.

    Google Scholar 

  25. A. Baczmanski, N. Hfaiedh, M. François, K. Wierzbanowski: Mater. Sci. Eng. A, 2009, vol. 501, pp. 153-165.

    Article  Google Scholar 

  26. [26] I.C. Noyan: Mater. Sci. Eng., 1985, vol. 75, pp. 95-103.

    Article  Google Scholar 

  27. Hofmann M, Gan W, Rebelo-Kornmeier J (2015) J Large-Scale Res Facil. 1A6:1-4.

    Google Scholar 

  28. Rebelo Kornmeier J, Hofmann M, Gan WM, Randau C, Braun K, Zeitelhack K, Defendi I, Krueger J, Faulhaber E, Brokmeier H (2017) Mater. Sci. Forum 905:151–156.

    Article  Google Scholar 

  29. Simmons G, Wang H (1971) Single Crystal Elastic Constants and Calculated Aggregate Properties. MIT Press, Cambridge

    Google Scholar 

  30. D. Gloaguen, T. Berchi, E. Girard, R. Guillén: J. Nucl. Mater., 2008, vol. 374, pp. 138-146.

    Article  CAS  Google Scholar 

  31. Kocks UF, Tomé CN, Wenk HR (1998) Texture and Anisotropy. Cambridge University Press, Cambridge, pp 288–289

    Google Scholar 

  32. T. Simson, A. Emmel, A. Dwars, J. Böhm: Addit. Manuf., 2017, vol. 17, pp. 183–189.

    Article  CAS  Google Scholar 

  33. [34] C. Li, Z.Y. Liu, X.Y. Fang, Y.B. Guo: Procedia CIRP, 2018, vol. 71, pp. 348-353.

    Article  Google Scholar 

  34. H. Ali, L. Ma, H. Ghadbeigi, K. Mumtaz: Mater. Sci. Eng. A, 2017, vol. 695, pp. 211-220.

    Article  CAS  Google Scholar 

  35. R. Mertens, B. Vranchen, N. Holmstock, Y. Kinds, J.-P. Kruth, J. Van Humbeeck: Physics Procedia, 2016, vol. 83, pp. 882-890.

    Article  CAS  Google Scholar 

  36. I. Yadroitec, I. Yadroitsava: Virtual Phys. Prototyp., 2015, vol. 10, pp. 67–76.

    Article  Google Scholar 

  37. M.E. Fitzpatrick, A. Lodini (2003) Analysis of Residual Stress by Diffraction using Neutron and Synchrotron radiation. Taylor & Francis, Routledge.

    Google Scholar 

  38. R.A Winholtz, A.D. Krawitz: Mater. Sci. Eng. A, 1996, vol. 205, pp. 257-258.

    Article  CAS  Google Scholar 

  39. D. Gloaguen, M. François, R. Guillén: J. Appl. Cryst., 2004, vol. 37, pp. 934-940.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is based upon experiments performed at the STRESS-SPEC instrument operated by FRMII at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. The authors thank the MLZ neutron Facilities scientific comities for the allocated experimental days (experiment 11962). This study is part of the FATAL project managed by IRT Jules Verne (French Institute in Research and Technology in Advanced Manufacturing). The authors wish to associate the industrial and academic partners of this project; respectively, ACB, Arts et Métiers ParisTech, CNRS, DAHER, Ecole Centrale de Nantes, Europe Technologies, FIVES, Renault, and University of Nantes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gloaguen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gloaguen, D., Girault, B., Courant, B. et al. Study of Residual Stresses in Additively Manufactured Ti-6Al-4V by Neutron Diffraction Measurements. Metall Mater Trans A 51, 951–961 (2020). https://doi.org/10.1007/s11661-019-05538-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05538-w

Navigation