Stress Localization Resulting from Grain Boundary Dislocation Interactions in Relaxed and Defective Grain Boundaries

Abstract

Large-scale molecular dynamics simulations are used to study strain and stress localization in atomistic polycrystalline FCC digital samples in a thin-film configuration, deformed in tension. Special focus is placed on the effects of additional grain boundary disorder on the dislocation–grain boundary interaction. The development of the localized stress and strain regions is studied as dislocations are emitted from and arrive at grain boundaries. Digital samples with two different degrees of disorder in the grain boundaries but otherwise identical microstructures are compared in order to understand the effects of additional defects on the stress concentration that develops at the grain boundaries. Localization phenomena are found to depend on the details of the grain boundary defect structure and relaxation state. The results clearly show that the samples with more disordered grain boundaries are more prone to strain and stress localization, with a higher fraction of atoms experiencing extreme deformation. The simulation results are validated by comparison with the predictions of continuum theories and experimental measurements of localized stress performed in austenitic stainless steel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    X.M. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, and B.P. Uberuaga: Phys. Rev. B, 2012, vol. 85, art. no. 214103.

    Google Scholar 

  2. 2.

    W. S. Yu and S. P. Shen, International Journal of Plasticity, 2016, 85, 93-109.

    CAS  Google Scholar 

  3. 3.

    B. L. Adams, B. S. El-Dasher, R. Merrill, J. Basinger and D. S. Li, Solid Mech Appl, 2004, 114, 315-323.

    Google Scholar 

  4. 4.

    M. Kiritani, N. Yoshida, H. Takata and Y. Maehara, J Phys Soc Jpn, 1975, 38, 1677-1686.

    CAS  Google Scholar 

  5. 5.

    R. S. Averback, J Nucl Mater, 1994, 216, 49-62.

    CAS  Google Scholar 

  6. 6.

    J. S. Robach, I. M. Robertson, B. D. Wirth and A. Arsenlis, Philos. Mag., 2003, 83, 955-967.

    CAS  Google Scholar 

  7. 7.

    Y. Matsukawa, Y. N. Osetsky, R. E. Stoller and S. J. Zinkle, Philos. Mag., 2008, 88, 581-597.

    CAS  Google Scholar 

  8. 8.

    Z. Jiao and G. S. Was, J Nucl Mater, 2008, 382, 203-209.

    CAS  Google Scholar 

  9. 9.

    K. Farrell, T. S. Byun and N. Hashimoto, J Nucl Mater, 2004, 335, 471-486.

    CAS  Google Scholar 

  10. 10.

    Z. Jiao and G. S. Was, J Nucl Mater, 2011, 408, 246-256.

    CAS  Google Scholar 

  11. 11.

    R. P. Tucker, M. S. Wechsler and S. M. Ohr, J Appl Phys, 1969, 40, 400–408.

    CAS  Google Scholar 

  12. 12.

    M. D. McMurtrey, B. Cui, I. Robertson, D. Farkas and G. S. Was, Current Opinion in Solid State & Materials Science, 2015, 19, 305-314.

    CAS  Google Scholar 

  13. 13.

    M. N. Gussev, K. G. Field and J. T. Busby, J Nucl Mater, 2015, 460, 139-152.

    CAS  Google Scholar 

  14. 14.

    T. S. Byun and N. Hashimoto, Am Soc Test Mater, 2008, 1492, 121-133.

    Google Scholar 

  15. 15.

    D. C. Johnson, B. Kuhr, D. Farkas and G. S. Was, Scripta Materialia, 2016, 116, 87-90.

    CAS  Google Scholar 

  16. 16.

    A. N. Stroh, Proc R Soc Lon Ser-A, 1954, 223, 404-414.

    Google Scholar 

  17. 17.

    J. D. Eshelby, F. C. Frank and F. R. N. Nabarro, Philos. Mag., 1951, 42, 351-364.

    Google Scholar 

  18. 18.

    J. F. Nye, Acta Metall Mater, 1953, 1, 153-162.

    CAS  Google Scholar 

  19. 19.

    M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Mater. Sci. Eng. A, 2010, 527, 2738-2746.

    Google Scholar 

  20. 20.

    M. Kamaya, Mater Charact, 2012, 66, 56-67.

    CAS  Google Scholar 

  21. 21.

    Y. Guo, T. B. Britton and A. J. Wilkinson, Acta Mater, 2014, 76, 1-12.

    CAS  Google Scholar 

  22. 22.

    T. B. Britton and A. J. Wilkinson, Acta Mater, 2012, 60, 5773-5782.

    Google Scholar 

  23. 23.

    Y. Guo, D. M. Collins, E. Tarleton, F. Hofmann, J. Tischler, W. Liu, R. Xu, A. J. Wilkinson and T. B. Britton, Acta Mater, 2015, 96, 229-236.

    CAS  Google Scholar 

  24. 24.

    E. B. Webb, J. A. Zimmerman and S. C. Seel, Math Mech Solids, 2008, 13, 221-266.

    Google Scholar 

  25. 25.

    A. C. Eringen, Int J Eng Sci, 1977, 15, 177-183.

    Google Scholar 

  26. 26.

    Z. L. Pan and T. J. Rupert, Acta Mater, 2015, 89, 205-214.

    CAS  Google Scholar 

  27. 27.

    N. J. Burbery, R. Das and W. G. Ferguson, Comput. Mater. Sci., 2015, 101, 16-28.

    CAS  Google Scholar 

  28. 28.

    N. J. Burbery, R. Das and W. G. Ferguson, Acta Mater, 2016, 108, 355-366.

    CAS  Google Scholar 

  29. 29.

    D. Foley and G.J. Tucker: Model. Simul. Mater. Sci., 2016, vol. 24, art. no. 075011.

    Google Scholar 

  30. 30.

    G. J. Tucker and D. L. McDowell, International Journal of Plasticity, 2011, 27, 841-857.

    CAS  Google Scholar 

  31. 31.

    J. V. Sharp, Philos. Mag., 1967, 16, 77–96.

    CAS  Google Scholar 

  32. 32.

    A. Patra and D. L. McDowell, Acta Mater, 2016, 110, 364-376.

    CAS  Google Scholar 

  33. 33.

    M. D. McMurtrey, G. S. Was, L. Patrick and D. Farkas, Mater. Sci. Eng. A, 2011, 528, 3730-3740.

    Google Scholar 

  34. 34.

    D. Farkas, Curr. Opin. Solid State Mater., 2013, 17, 284-297.

    CAS  Google Scholar 

  35. 35.

    S. Plimpton, J Comput Phys, 1995, 117, 1-19.

    CAS  Google Scholar 

  36. 36.

    G. Bussi, T. Zykova-Timan, and M. Parrinello, J. Chem. Phys., 2009, vol. 130, art. no. 074101.

    Google Scholar 

  37. 37.

    M. S. Daw and M. I. Baskes, Phys. Rev. B, 1984, 29, 6443-6453.

    CAS  Google Scholar 

  38. 38.

    A.F. Voter and S.P. Chen, MRS Symp. Proc., 1987, vol. 82, pp. 175–180.

    CAS  Google Scholar 

  39. 39.

    C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, Phys. Rev. B, 1998, 58, 11085-11088.

    CAS  Google Scholar 

  40. 40.

    A. Stukowski: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, art. no. 085001.

    Google Scholar 

  41. 41.

    F. Shimizu, S. Ogata and J. Li, Mater Trans, 2007, 48, 2923-2927.

    CAS  Google Scholar 

  42. 42.

    A. J. Wilkinson, G. Meaden and D. J. Dingley, Mater Sci Tech-Lond, 2006, 22, 1271-1278.

    CAS  Google Scholar 

  43. 43.

    H. Van Swygenhoven, M. Spaczer, A. Caro and D. Farkas, Phys. Rev. B, 1999, 60, 22-25.

    Google Scholar 

  44. 44.

    X. Y. Sun, C. Fressengeas, V. Taupin, P. Cordier and N. Combe, International Journal of Plasticity, 2018, 104, 134-146.

    CAS  Google Scholar 

  45. 45.

    D. L. Olmsted, S. M. Foiles and E. A. Holm, Acta Mater, 2009, 57, 3694-3703.

    CAS  Google Scholar 

  46. 46.

    J. Weertman, Dislocation based fracture mechanics, World Scientific, Singapore; River Edge, N.J., 1996.

    Google Scholar 

  47. 47.

    M. D. McMurtrey, G. S. Was, B. Cui, I. Robertson, L. Smith and D. Farkas, International Journal of Plasticity, 2014, 56, 219-231.

    CAS  Google Scholar 

  48. 48.

    D. C. Johnson, B. Kuhr, D. Farkas and G. S. Was, Acta Materialia, 2019, 170, 166- 175.

    CAS  Google Scholar 

  49. 49.

    W. A. T. Clark, R. H. Wagoner, Z. Y. Shen, T. C. Lee, I. M. Robertson and H. K. Birnbaum, Scripta Metallurgica Et Materialia, 1992, 26, 203-206.

    CAS  Google Scholar 

  50. 50.

    A. Hasnaoui, P. M. Derlet and H. Van Swygenhoven, Acta Mater, 2004, 52, 2251-2258.

    CAS  Google Scholar 

  51. 51.

    M. P. Dewald and W. A. Curtin, Philos. Mag., 2007, 87, 4615-4641.

    CAS  Google Scholar 

  52. 52.

    J. Kacher, B. P. Eftink, B. Cui and I. M. Robertson, Curr. Opin. Solid State Mater., 2014, 18, 227-243.

    CAS  Google Scholar 

  53. 53.

    Z. L. Pan and T. J. Rupert, Comput. Mater. Sci., 2014, 93, 206-209.

    CAS  Google Scholar 

  54. 54.

    S. Chandra, M. K. Samal, V. M. Chavan and R. J. Patel, Mater. Sci. Eng. A, 2015, 646, 25-32.

    CAS  Google Scholar 

  55. 55.

    W. S. Yu, Z. Q. Wang and S. P. Shen, Comput. Mater. Sci., 2017, 137, 162-170.

    CAS  Google Scholar 

  56. 56.

    K. Kinoshita, T. Shimokawa and T. Kinari, Mater Trans, 2012, 53, 147-155.

    CAS  Google Scholar 

  57. 57.

    T. Shimokawa, T. Hiramoto, T. Kinari and S. Shintaku, Mater Trans, 2009, 50, 2-10.

    CAS  Google Scholar 

  58. 58.

    P. R. M. van Beers, V. G. Kouznetsova and M. G. D. Geers, Mech Mater, 2015, 90, 69-82.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under grant DE-FG02-08ER46525. The authors would like to acknowledge Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the results reported within this paper (www.arc.vt.edu). The simulations in this paper were run using the LAMMPS software package (lammps.sandia.gov). Figures were generated using OVITO (www.ovito.org).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diana Farkas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 12, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuhr, B., Farkas, D., Robertson, I.M. et al. Stress Localization Resulting from Grain Boundary Dislocation Interactions in Relaxed and Defective Grain Boundaries. Metall Mater Trans A 51, 667–683 (2020). https://doi.org/10.1007/s11661-019-05534-0

Download citation