Quantification of Solute Topology in Atom Probe Tomography Data: Application to the Microstructure of a Proton-Irradiated Alloy 625


The analysis of solute clustering in atom probe tomography (APT) has almost exclusively relied on a simple algorithm based on the simple friend-of-friend analysis where a threshold distance or maximum separation defines whether atoms are part of a cluster or part of the matrix. This method is however limited to very specific microstructures and is very sensitive to parameter selection. To expand the range and applicability of current APT analysis tools, we introduce new quantitative data analysis methods based on density-based hierarchical clustering algorithms and relevant to solute clustering and segregation. We demonstrate the methods’ performance on the complex microstructure developing in a proton-irradiated Alloy 625, specifically focusing on the analyses of nanoscale Al clusters, Si clusters, and Si-decorated dislocation loops.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Gault B, Moody MP, Cairney JM, Ringer SP (2012) Atom Probe Microscopy. Springer, New York

    Google Scholar 

  2. 2.

    C.A. Williams, J.M. Hyde, G.D.W. Smith, E.A. Marquis, Journal of Nuclear Materials, 2011, vol 412, pp.100-105.

    CAS  Google Scholar 

  3. 3.

    M.P. Moody, B. Gault, L.T. Stephenson, D. Haley, S.P. Ringer, Ultramicroscopy, 2009, vol. 109, pp. 815-824.

    CAS  Google Scholar 

  4. 4.

    C. Oberdorfer, T. Withrow, L.J. Yu, K. Fisher, E.A. Marquis, W. Windl, Materials Characterization, 2018, vol. 146, pp.324-335.

    CAS  Google Scholar 

  5. 5.

    E.A. Marquis, F. Vurpillot, Microscopy and microanalysis, 2008, vol. 14, pp. 561-570.

    CAS  Google Scholar 

  6. 6.

    F. Vurpillot, A. Bostel, D. Blavette, Applied Physics Letters, 2000, vol. 76, pp. 3127-3129.

    CAS  Google Scholar 

  7. 7.

    J.M. Hyde, C.A. English: in R.G.E. Lucas, L. Snead, M.A.J. Kirk, R.G. Elliman eds., MRS 2000 Fall Meeting Symp., Boston, MA, 2001, pp. 27–29.

  8. 8.

    L.T. Stephenson, M.P. Moody, P.V. Liddicoat, S.P. Ringer, Microscopy and Microanalysis, 2007, vol. 13, pp. 448-63.

    CAS  Google Scholar 

  9. 9.

    D. Vaumousse, A. Cerezo, P.J. Warren, Ultramicroscopy, 2003, vol. 95, pp. 215-21.

    CAS  Google Scholar 

  10. 10.

    Y. Dong, A. Etienne, A. Frolov, S. Fedotova, K. Fujii, K. Fukuya, C. Hatzoglou, E. Kuleshova, K. Lindgren, A. London, A. Lopez, S. Lozano-Perez, Y. Miyahara, Y. Nagai, K. Nishida, B. Radiguet, D.K. Schreiber, N. Soneda, M. Thuvander, T. Toyama, J. Wang, F. Sefta, P. Chou, E.A. Marquis, Microscopy and Microanalysis, 2019, vol. 25, pp. 356-366.

    Google Scholar 

  11. 11.

    J. Zelenty, A. Dahl, J. Hyde, G.D. Smith, M.P. Moody, Microscopy and Microanalysis, 2017, vol. 23, pp. 269-278.

    CAS  Google Scholar 

  12. 12.

    I. Ghamarian, E.A. Marquis, Ultramicroscopy, 2019, 200, pp. 28-38.

    CAS  Google Scholar 

  13. 13.

    McInnes L, Healy J, Astels S (2017) J. Open Source Softw 2:205

    Google Scholar 

  14. 14.

    L. McInnes, J. Healy, arXiv preprint, 2017, arXiv:1705.07321.

  15. 15.

    B.P. Kent, A. Rinaldo, T. Verstynen, arXiv preprint, 2013, arXiv:1307.8136.

  16. 16.

    F. Liu, R. Kirchheim, Scripta Materialia, 2004, vol. 51, pp. 521-525.

    CAS  Google Scholar 

  17. 17.

    D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Current Opinion in Solid State and Materials Science, 2014, vol. 18, pp. 253-261.

    CAS  Google Scholar 

  18. 18.

    O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, D.N. Seidman, Microscopy and Microanalysis, 2000, vol. 6, pp. 437-444.

    CAS  Google Scholar 

  19. 19.

    P. Felfer, B. Scherrer, J. Demeulemeester, W. Vandervorst, J.M. Cairney, Ultramicroscopy, 2015, vol. 159, pp. 438-444.

    CAS  Google Scholar 

  20. 20.

    P.J. Felfer, B. Gault, G. Sha, L. Stephenson, S.P. Ringer, J.M. Cairney, Microscopy and Microanalysis, 2012, vol. 18, pp. 359-364.

    CAS  Google Scholar 

  21. 21.

    H. Aboulfadl, J. Deges, P. Choi, D. Raabe, Acta Materialia, 2015, vol. 86, pp. 34-42.

    CAS  Google Scholar 

  22. 22.

    K. Thompson, P.L. Flaitz, P. Ronsheim, D.J. Larson, T.F. Kelly, Science, 2007, vol. 317, pp. 1370–74.

    CAS  Google Scholar 

  23. 23.

    D. Blavette, E. Cadel, A. Fraczkiewicz, A. Menand, Science, 1999, vol. 286, pp. 2317–19.

    CAS  Google Scholar 

  24. 24.

    J. Wilde, A. Cerezo, G.D.W. Smith, Scripta Materialia, 2000, vol. 43, pp. 39-48.

    CAS  Google Scholar 

  25. 25.

    P. Felfer, A. Ceguerra, S. Ringer, J. Cairney, Ultramicroscopy, 2013, vol. 132, pp. 100-106.

    CAS  Google Scholar 

  26. 26.

    E.A. Marquis, 2019, https://github.com/emarq.

  27. 27.

    R.R. Curtin: Int. Conf. Similarity Search Appl., Springer, 2015, pp. 77–89.

  28. 28.

    R.R. Curtin, W.B. March, P. Ram, D.V. Anderson, A.G. Gray, C.L. Isbell Jr, arXiv preprint, 2013, arXiv:1304.4327.

  29. 29.

    W.B. March, P. Ram, A.G. Gray, Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., ACM, 2010, pp. 603–12.

  30. 30.

    R. Sibson, The computer journal, 1973, vol. 16, pp. 30-34.

    Google Scholar 

  31. 31.

    J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, Z. Su, Shape Modeling International (SMI 2010), IEEE, vol. 2010, pp. 187-197.

    Google Scholar 

  32. 32.

    B. Gault, F. Danoix, K. Hoummada, D. Mangelinck, H. Leitner, Ultramicroscopy, 2012, vol. 113, pp. 182-191.

    CAS  Google Scholar 

  33. 33.

    R.C. Prim, The Bell System Technical Journal, 1957, vol. 36, pp. 1389-1401.

    Google Scholar 

  34. 34.

    Y. Boykov, V. Kolmogorov, IEEE Transactions on Pattern Analysis & Machine Intelligence pp. 1124–37.

  35. 35.

    Li-Jen Yu, E.A. Marquis, J. Nucl. Mater. (to be submitted).

  36. 36.

    A. Barbu, A. Ardell, Scripta Metallurgica, 1975, vol. 9, pp. 1233-1237.

    CAS  Google Scholar 

  37. 37.

    V. Kuksenko, C. Pareige, P. Pareige, Journal of Nuclear Materials, 2013, vol. 432, pp. 160-165.

    CAS  Google Scholar 

  38. 38.

    Bachhav M, RobertOdette G, Marquis EA (2014) Scripta Materialia 74:48–51

    CAS  Google Scholar 

  39. 39.

    R. Bajaj, W. Mills, M. Lebo, B. Hyatt, M. Burke, Westinghouse Electric Corp., West Mifflin, PA (United States), 1995.

    Google Scholar 

  40. 40.

    P. Grobner, Metallurgical Transactions, 1973, vol. 4, pp. 251-260.

    CAS  Google Scholar 

  41. 41.

    G.A. Young, J.D. Tucker, D.R. Eno, Proc. 16th Ann. Conf. Environ. Assist. Crack. Mater. Nucl. Power Syst.-Water React., 2013, pp. 1–22.

  42. 42.

    G.R. Odette, T. Yamamoto, D. Klingensmith, Philosophical Magazine, 2005, vol. 85, pp. 779-797.

    CAS  Google Scholar 

  43. 43.

    E. Meslin, B. Radiguet, M. Loyer-Prost, Acta Materialia, 2013, vol. 61, pp. 6246-6254.

    CAS  Google Scholar 

  44. 44.

    P.D. Styman, J.M. Hyde, K. Wilford, G.D.W. Smith, Ultramicroscopy, 2013, vol. 132, pp. 258-264.

    CAS  Google Scholar 

  45. 45.

    T. Diaz de la Rubia, M.W. Guinan, Physical Review Letters, 1991, vol. 66, pp. 2766-2769.

    CAS  Google Scholar 

  46. 46.

    R. Madec, B. Devincre, L.P. Kubin, Physical Review Letters, 2002, vol. 89, 255508.

    CAS  Google Scholar 

  47. 47.

    S. Queyreau, G. Monnet, B. Devincre, Acta Materialia, 2010, vol. 58, pp. 5586-5595.

    CAS  Google Scholar 

  48. 48.

    R. Madec, B. Devincre, L. Kubin, T. Hoc, D. Rodney, Science, 2003, vol. 301, pp. 1879–82.

    CAS  Google Scholar 

  49. 49.

    B. Devincre, T. Hoc, L. Kubin, Science, 2008, vol. 320, pp. 1745–49.

    CAS  Google Scholar 

  50. 50.

    Li W, Field KG, Morgan D (2018) Computational Materials 4:36

    Google Scholar 

  51. 51.

    Jenkins ML, Kirk MA (2000) Characterisation of Radiation Damage by Transmission Electron Microscopy. CRC Press, Boca Raton

    Google Scholar 

  52. 52.

    A. Bhattacharya, E. Meslin, J. Henry, C. Pareige, B. Décamps, C. Genevois, D. Brimbal, A. Barbu, Acta Materialia, 2014, vol. 78, pp. 394-403.

    CAS  Google Scholar 

  53. 53.

    M.L. Jenkins, Z. Yao, M. Hernández-Mayoral, M.A. Kirk, Journal of Nuclear Materials, 2009, vol. 389, pp. 197-202.

    CAS  Google Scholar 

  54. 54.

    C.A. Williams, J.M. Hyde, G.D. Smith, E.A. Marquis, Journal of Nuclear Materials, 2011, vol. 412, pp. 100-105.

    CAS  Google Scholar 

  55. 55.

    A. Etienne, B. Radiguet, N.J. Cunningham, G.R. Odette, R. Valiev, P. Pareige, Ultramicroscopy, 2011, vol. 111, pp. 659-663.

    CAS  Google Scholar 

  56. 56.

    M.K. Miller, Microscopy Research and Technique, 2006, vol. 69, pp. 359-365.

    CAS  Google Scholar 

  57. 57.

    Y. Chen, P.H. Chou, E.A. Marquis, Journal of Nuclear Materials, 2014, vol. 451, pp. 130-136.

    CAS  Google Scholar 

  58. 58.

    D.J. Edwards, E.P. Simonen, S.M. Bruemmer, Journal of nuclear materials, 2003, vol. 317, pp. 13-31

    CAS  Google Scholar 

Download references


The authors acknowledge technical support and funding from the Air Force Office of Scientific Research under Award FA9550-14-1-0249, the DOE Office of Nuclear Energy’s Nuclear Energy University Program; the technical staff at the University of Michigan Center for Materials Characterization and Michigan Ion Beam Laboratory. The authors would also like to thank Dr. Gracie Burke (University of Manchester) and Dr. Julie Tucker (Oregon State University) for providing the alloy used in this work.

Author information



Corresponding author

Correspondence to Emmanuelle A. Marquis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 21, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghamarian, I., Yu, LJ. & Marquis, E.A. Quantification of Solute Topology in Atom Probe Tomography Data: Application to the Microstructure of a Proton-Irradiated Alloy 625. Metall Mater Trans A 51, 42–50 (2020). https://doi.org/10.1007/s11661-019-05520-6

Download citation