Evolution of Bimodal Microstructure and High-Temperature Wear Resistance of Al-Cu-Ni Alloys

Abstract

We report excellent high-temperature (300 °C) wear resistance of copper mold-cast Al80Cu15Ni5 and Al75Cu15Ni10 alloys. The evolution of a novel bimodal microstructure consisting of α-Al, eutectic α-Al + Al2Cu, and a vacancy ordered phase (Al3Ni2 type) restricts severe adhesive and abrasive wear at high temperature. Particularly, the Al75Cu15Ni10 alloy shows a low wear rate at 300 °C. In-depth microstructural characterization of the as-cast alloys and the worn samples elucidate the wear mechanism.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    G.E. Totten and D.S. Mackenzie, Handbook of Aluminum: Alloy Production and Materials Manufacturing. 2nd ed. CRC Press, Boca Raton, FL, 2003.

    Google Scholar 

  2. 2.

    J.R. Davis, Aluminum and Aluminum Alloys, 3rd ed., ASM International, Materials Park, OH, 1993.

    Google Scholar 

  3. 3.

    C.S. Tiwary, S. Kashyap, and K. Chattopadhyay: Scripta Mater., 2014, vol. 93, pp. 20-23.

    CAS  Google Scholar 

  4. 4.

    C. Mondal, A.K. Mukhopadhyay, T. Raghu, and V.K. Varma: Mater. Sci. Eng. A,2007, vol. 454-455, pp. 673-78.

    Google Scholar 

  5. 5.

    C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay: Mater. Sci. Eng. A, 2013, vol. 577, pp. 87-100.

    CAS  Google Scholar 

  6. 6.

    P. Nandi, S. Suwas, S. Kumar, and K. Chattopadhyay: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2591-2603.

    Google Scholar 

  7. 7.

    C.T. Liu and J.O. Stiegler: Science, 1984, vol. 226, pp. 636-42.

    CAS  Google Scholar 

  8. 8.

    C.S. Tiwary, S. Kashyap, D.H. Kim, and K. Chattopadhyay: Mater. Sci. Eng. A, 2015, vol. 639, pp. 359-69.

    CAS  Google Scholar 

  9. 9.

    J.D. Cotton and M.J. Kaufman: Metall. Trans. A, 1991, vol. 22, pp. 927-34.

    CAS  Google Scholar 

  10. 10.

    P. Pandey, S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5940-50.

    Google Scholar 

  11. 11.

    B. Cantor, G.J. May, and G.A. Chadwick: J. Mater. Sci., 1973, vol. 8, pp. 830-38.

    CAS  Google Scholar 

  12. 12.

    B. Cantor and G.A. Chadwick: J. Mater. Sci., 1975, vol. 10, pp. 578-88.

    CAS  Google Scholar 

  13. 13.

    J.M. Park, N. Mattern, U. Kühn, J. Eckert, K.B. Kim, W.T. Kim, K. Chattopadhyay, and D.H. Kim: J. Mater. Res., 2009, vol. 24, pp. 2605-09.

    CAS  Google Scholar 

  14. 14.

    E. Ma: Nat. Mater., 2003, vol. 2, pp. 7-8.

    CAS  Google Scholar 

  15. 15.

    S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Intermetallics, 2011, vol. 19, pp. 1943-52.

    CAS  Google Scholar 

  16. 16.

    S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Mater. Sci. Eng. A, 2013, vol.559, pp. 74-85.

    CAS  Google Scholar 

  17. 17.

    S.W. Lee, J.T. Kim, S.H. Hong,H.J. Park, J.Y. Park, N.S. Lee, Y.Seo, J.Y. Suh, J. Eckert, D.H. Kim, J.M. Park, and K.B. Kim: Sci. Rep., 2014, 4, 6500

    CAS  Google Scholar 

  18. 18.

    S. Maity, S. Chakraborty, B. K. Show, and S. Bera: J. Alloys Comp., 2018, vol. 769, pp. 940-50.

    CAS  Google Scholar 

  19. 19.

    T.P. Yadav, N.K. Mukhopadhyay, R.S. Tiwary, and O.N. Srivastava: Phil. Mag. Lett., 2007, 87, 781-89.

    CAS  Google Scholar 

  20. 20.

    A. Subramaniam and S. Ranganathan: J. Non-Cryst. Solids, 2004, vol. 334-335, pp. 114-16.

    Google Scholar 

  21. 21.

    M.V. Sande, D.E. Ridder, J.V. Landuyt, and S. Amelinckx: Phys. Stat. Sol. (a), 1978, vol. 60, pp. 587-99.

    Google Scholar 

  22. 22.

    C.H. Wang, S.W. Chen, C.H. Chang, and J.C. Wu: Metall. Mater. Trans. A, 2003, vol. 34, pp. 199-209.

    CAS  Google Scholar 

  23. 23.

    J. Kundin, E. Pogorelov, and H. Emmerich: Acta Mater., 2015, vol. 83, pp. 448-59.

    CAS  Google Scholar 

  24. 24.

    S. Maity, D.K. Chanda, P. Ramasamy, B.K. Show, J. Eckert, and S. Bera: Phil. Mag. Lett., 2018, vol. 98, pp. 486-93.

    CAS  Google Scholar 

  25. 25.

    A.V. Rodrigues, T.S. Lima, T.A. Vida, C. Brito, A. Garcia, and N. Cheung: Met. Mater. Int., 2018, vol. 24, pp. 1058-76.

    CAS  Google Scholar 

  26. 26.

    D.A. Rigney, M.G.S. Naylor, R. Divakar, and L.K. Ives: Mater. Sci. Eng., 1986, vol. 81, pp. 409-25.

    Google Scholar 

  27. 27.

    M.A. Moore and R.M. Douthwaite: Metall. Trans. A, 1976, vol. 7, pp. 1833-39.

    CAS  Google Scholar 

  28. 28.

    C.S. Tiwary, J. Prakash, S. Chakraborty, D.R. Mahapatra, and K. Chattopadhyay: Philos. Mag., 2018, vol. 98, pp. 2680-2700.

    CAS  Google Scholar 

  29. 29.

    S.M. Kuo and D.A. Rigney: Mater. Sci. Eng. A, 1992, vol. 157, pp. 131-43.

    Google Scholar 

  30. 30.

    S.L. Rice, H. Nowotny, and S.F. Wayne: Wear, 1981, vol. 74, pp. 131-42.

    CAS  Google Scholar 

  31. 31.

    A. Rosenfield: Wear, 1987, vol. 116, pp. 319-28.

    Google Scholar 

  32. 32.

    G.M. Hamilton and L.E. Goodman: J. Appl. Mech., 1966, vol. 33, pp. 371-76.

    Google Scholar 

  33. 33.

    S. Kitahara and A. Hasui: J. Vac. Sci. Technol., 1974, vol. 11, pp. 747-53.

    CAS  Google Scholar 

  34. 34.

    V.V. Sobolev, J.M. Guilemany, J. Nutting, and J.R. Miquel: Int. Mater. Rev., 1997, vol. 42, pp. 117-36.

    CAS  Google Scholar 

  35. 35.

    J. Kundin, H.-L. Chen, R. Siquieri, and H. Emmerich: Eur. Phys. J. Plus, 2011, vol. 126, pp. 96-113.

    Google Scholar 

  36. 36.

    D. Tourret and C.-A. Gandin: Acta Mater., 2009, vol. 57, pp. 2066-79.

    CAS  Google Scholar 

  37. 37.

    D.H.S. John and L.M. Hogan: Acta Metall., 1987, vol.35, pp. 171-74.

    Google Scholar 

  38. 38.

    R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, and L. Schultz: Mater. Trans., 2002, vol. 43, pp. 1670-75.

    CAS  Google Scholar 

  39. 39.

    W. Kurz and D.J. Fisher: Int. Mater. Rev., 1979, vol. 24, pp. 177-204.

    CAS  Google Scholar 

  40. 40.

    K. Kapoor, D. Lahiri, S. Batra, V.R. Rao, and T. Sanyal: Mater. Charact., 2005, vol. 54, pp. 131-40.

    CAS  Google Scholar 

  41. 41.

    S. Maity, A. Sinha, and S. Bera: Nano-Struct. Nano-Objects, 2018, vol. 16, pp. 63-68.

    CAS  Google Scholar 

  42. 42.

    J.J. Wert, S.A. Singerman, and S.G. Caldwell: Wear, 1983, vol.92, pp. 213-29.

    CAS  Google Scholar 

  43. 43.

    D.A. Rigney and W.A. Glaeser: Wear, 1978, vol.46, pp. 241-50.

    CAS  Google Scholar 

  44. 44.

    G.E. Dieter, Mechanical Metallurgy. 3rd ed., McGraw Hill Education Pvt Ltd, New York, 2013, p. 128.

    Google Scholar 

  45. 45.

    S. Kumar, V.S. Sarma, and B.S. Murty: Metall. Mater. Trans. A, 2009, vol. 40, pp. 223-31.

    CAS  Google Scholar 

  46. 46.

    A. Mahato, N. Verma, V. Jayaram, and S.K. Biswas: Acta Mater., 2011, vol. 59, pp. 6069-82.

    CAS  Google Scholar 

  47. 47.

    D. H. Buckley and R. L. Johnson, Marked influence of crystal structure on the friction and wear characteristics of cobalt and cobalt-base alloys in vacuum to lo-’- I: Polycrystalline and single crystal cobalt, N.A.S.A. tech. Note D-2523, 1964; ‘11: Cobalt alloys, N.A.S.A. tech. Note D-2524, 1964.

  48. 48.

    K. J. Bansali and A. E. Miller: Wear, 1982, vol. 75, pp. 241-52.

    Google Scholar 

Download references

The authors are grateful to Dr. Sandip Bysakh, Senior Scientist, CGCRI KOLKATA for his technical support through TEM characterization. Useful technical discussions with Prof. N. K. Mukhopadhyay and Prof. Indranil Manna are gratefully acknowledged. P.R. and J.E. gratefully acknowledge support through the European Research Council under the ERC Advanced Grant INTELHYB (Grant ERC-2013-ADG-340025).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Supriya Bera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 3, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maity, S., Chanda, D.K., Ramasamy, P. et al. Evolution of Bimodal Microstructure and High-Temperature Wear Resistance of Al-Cu-Ni Alloys. Metall Mater Trans A 51, 109–115 (2020). https://doi.org/10.1007/s11661-019-05518-0

Download citation