Skip to main content
Log in

Effect of Heterophase Interfaces on Microstructure and Crystallographic Texture Evolution During Rolling of Directionally Solidified Ag-Cu Eutectic Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A directionally solidified Ag-Cu eutectic alloy was deformed by rolling to understand the role of heterophase interfaces on the deformation behavior of ultrafine and nanocrystalline face-centred cubic metals. During rolling, the initial 〈220〉 fibre texture was gradually shifted to a Brass type texture for both Ag and Cu phases. More interestingly, a similar path of texture evolution was observed for both the phases at all strain levels. The in-depth transmission electron microscopy analysis revealed that the Ag lamellae deformed primarily by twinning, while the Cu lamellae deformed by twinning and dislocation slip. Furthermore, the special cube-on-cube and twin heterophase interfaces facilitated co-deformation and co-rotation of the adjacent Ag and Cu lamella due to a strong latent hardening effect, which stimulated a similar texture evolution for both phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. S. Kumar, H. V. Swygenhoven, S. Suresh, Acta Mater., 2003, vol. 51, pp 5743-5774.

    Article  CAS  Google Scholar 

  2. H. V. Swygenhoven, P. M. Derlet, A. G. Froseth, Acta Mater., 2006, vol. 54 pp. 1975-1983.

    Article  Google Scholar 

  3. L. Lu, M. Dao, T. Zhu, J. Li, Scripta Mater., 2009, vol. 60, pp. 1062-1066.

    Article  CAS  Google Scholar 

  4. L. Lu, X. Chen, X. Huang, K. Lu, Science, 2009, vol. 323, pp. 607-610.

    Article  CAS  Google Scholar 

  5. G.J. Tucker, (Ph.D. dissertation), Georgia Institute of Technology, 2011.

  6. Y. T. Zhu, X. Z. Liao, X. L. Wu, Prog. Mater. Sci., 2012, vol 57, pp. 1-62.

    Article  CAS  Google Scholar 

  7. W. Skrotzki, A. Eschke, B. Joni, T. Ungar, L.S. Toth, Yu. Ivanisenko, L. Kurmanaeva, Acta Mater., 2013, vol. 61, pp. 7271-7284.

    Article  CAS  Google Scholar 

  8. C. F. Gu, L. S. Toth, Y. D. Zhang, M. Hoffman, Scripta Mater., 2014, vol. 92, pp. 51-54.

    Article  CAS  Google Scholar 

  9. P. Ghosh, S. V. Petegem, H. V. Swygenhoven, A. H. Chokshi, Mater. Sci. Eng. A, 2017, vol. 701, pp. 101-110.

    Article  CAS  Google Scholar 

  10. I. A. Ovidko, R. Z. Valiev, Y. T. Zhu, Prog. Mater. Sci., 2018, vol. 94, pp. 462-540.

    Article  Google Scholar 

  11. I. J. Beyerlein, J. R. Mayeur, R. J. McCabe, S. J. Zheng, J. S. Carpenter, N. A. Mara, Acta Mater,2014, vol. 72, pp. 137-147.

    Article  CAS  Google Scholar 

  12. I. J. Beyerlein, N. A. Mara, D. Bhattacharyya, D. J. Alexander, C. T. Necker, Int. J. Plasticity, 2011, vol. 27, pp. 121-146.

    Article  CAS  Google Scholar 

  13. J. Hirsch, K. Lücke, Acta Metall., 1988, vol. 36, pp. 2863-2882.

    Article  CAS  Google Scholar 

  14. J. Hirsch, K. Lücke, Acta. Metall., 1988, vol. 36, pp. 2883-2904.

    Article  CAS  Google Scholar 

  15. J. Hirsch, K. Lücke, Acta Metall., 1988, vol.36, pp. 2905-2927.

    Article  CAS  Google Scholar 

  16. J. Wang, I. J. Beyerlien, N. A. Mara, D. Bhattacharyya, Scripta Mater., 2011, vol. 64, pp. 1083-1086.

    Article  CAS  Google Scholar 

  17. Y. Z. Tian, Z. F. Zhang, Scripta Mater., 2012, vol. 66, pp. 65-68.

    Article  CAS  Google Scholar 

  18. O. T. Kingstedt, B. P. Eftink, I. M. Robertson, J. Lambros, Acta Mater., 2016, vol. 105, pp. 273-283.

    Article  CAS  Google Scholar 

  19. B. P.Eftink, N. A. Mara, O. T. Kingstedt, D. Safarik, S. Wang, J. Lambros, I. M. Robertson, Mater. Sci. Eng. A, 2018, vol. 712, pp. 313-324.

    Article  CAS  Google Scholar 

  20. B. P.Eftink, N. A. Mara, O. T. Kingstedt, D. Safarik, S. Wang, J. Lambros, I. M. Robertson, Mater. Sci. Eng. A, 2014, vol. 681, pp. 254-261.

    Article  Google Scholar 

  21. B. P. Eftink, A. Li, I. Szlufarska, N. A. Mara, I. M. Robertson, Acta Mater., 2017, vol. 138, pp. 212-223.

    Article  CAS  Google Scholar 

  22. R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, I. Sabirov, Adv. Eng. Mater., 2006, vol. 8, pp. 1046-1056.

    Article  CAS  Google Scholar 

  23. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier, Annu. Rev. Mater. Res., 2010, vol. 40, pp. 319–343.

    Article  CAS  Google Scholar 

  24. K. S. Kormout, P. Ghosh, V. Maier-Kiener, R. Pippan, J. Alloys Comp., 2017, vol. 695, pp. 2285-2294.

    Article  CAS  Google Scholar 

  25. P. Ghosh, K. S. Kormout, R. Pippan, IOP Conference Series: Mater. Sci. Eng., 2017, vol. 219, art. no. 012021, https://doi.org/10.1088/1757-899X/219/1/012021

    Article  Google Scholar 

  26. A. Bachmaier, R. Pippan, Int. Mater. Rev., 2013, vol. 58, pp. 41-62.

    Article  CAS  Google Scholar 

  27. P Ghosh, KS Kormout, J Todt, U Lienert, J Keckes, R Pippan, J. Mech. Eng. Sci. Part C, 2018, vol. 233(3), pp 794-806. https://doi.org/10.1177/0954406218761508.

    Article  CAS  Google Scholar 

  28. S. J. Zheng, J. Wang, J. S. Carpenter, W. M. Mook, P. O. Dickerson, N. A. Mara, I. L Beyerlein, Acta Mater., 2014, vol. 79, pp. 282-291.

    Article  CAS  Google Scholar 

  29. A. Misra, J. P. Hirth, R. G. Hoagland, Acta Mater., 2005, vol. 53, pp. 4817–4824.

    Article  CAS  Google Scholar 

  30. T. Leffers, R. K. Ray, Prog. Mater. Sci., 2009, vol. 54, pp. 351-396.

    Article  CAS  Google Scholar 

  31. X. L. Wu, X. Z. Liao, S. G. Srinivasan, F. Zhou, E. J. Lavernia, R. Z. Valiev, Y. T. Zhu, Phys. Rev. Lett., 2008, vol. 100, art. no. 095701, https://doi.org/10.1103/PhysRevLett.100.095701

    Article  CAS  Google Scholar 

  32. X. L. Wu, Y. T. Zhu, Phys. Rev. Lett., 2008, vol. 101, pp. 025503.

    Article  CAS  Google Scholar 

  33. X. H. An, M. Song, Y. Huang, X. Z. Liao, S. P. Ringer, T. G Langdon, Y. T. Zhu, Scripta Mater., 2014, vol. 72, pp. 35-38.

    Article  Google Scholar 

  34. B. P. Eftink, A. Li, I. Szlufarska, I. M. Robertson, Acta Mater., 2016, vol. 117, pp. 111-121.

    Article  CAS  Google Scholar 

  35. P. Van Houtte, Acta Metall., 1978, vol. 26, pp. 591-604.

    Article  Google Scholar 

  36. Kalidindi SR, Int. J Plasticity, 2001, vol. 17, pp. 837-860.

    Article  CAS  Google Scholar 

  37. H. Paul, A. Morawiec, E. Bouzy, J. J. Fundenberger, A. Piatkowski, Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3775-3786.

    Article  CAS  Google Scholar 

  38. B. J. Duggan, M. Hatherly, W. B. Hutchinson, P. T.Wakefield, Metal Sci., 1978, vol. 12, pp. 343-351.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JL gratefully acknowledges the access to the TEM facility at the Erich Schmidt Institute of Materials Science of the Austrian Academy of Sciences, the financial support from the Major International (Regional) Joint Research Project (No. 51420105005) from China and the Overseas, Hong Kong, Macao Scholars Cooperative Research Fund (No. 51728101) from China and FWF project (P 32378-N37). PG, OR and RP are grateful to the European Research Council for funding part of this project under ERC grant (USMS – 340185). Help of Gabriele Felber and Silke Modritsch with TEM and SEM sample preparation is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiehua Li or Pradipta Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 15, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, J., Renk, O. et al. Effect of Heterophase Interfaces on Microstructure and Crystallographic Texture Evolution During Rolling of Directionally Solidified Ag-Cu Eutectic Alloy. Metall Mater Trans A 51, 368–379 (2020). https://doi.org/10.1007/s11661-019-05515-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05515-3

Navigation