Skip to main content
Log in

Plastic Behavior of Aluminum and Dislocation Patterning Based on Continuum Dislocation Dynamic (CDD)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, a continuum multiscale model based on discrete dislocation dynamics and viscoplastic self-consistent theory is developed. The model is capable of describing the macroscopic deformation behavior of polycrystalline metals and alloys, maintaining at the same time a microscopic level resolution that captures the dislocation density patterns within each grain. The continuum dislocation dynamics model is based on a set of nonlinear partial differential equations of the dislocation densities inside each grain. Three different types of dislocations, two mobile (positive and negative) and one immobile, are considered. The shear strain within each grain is calculated by the total dislocation density at every time step, and then linked to the viscoplastic self-consistent framework to calculate the macroscopic behavior of the polycrystalline material. At the same time, the dislocation density pattering within each grain, calculated by the evolution equations, is recorded to provide a local view of the material at grain level. For the purpose of demonstration, the focus of this paper is on polycrystalline Aluminum and the numerical solutions are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Lubliner, Plasticity Theory, 1st ed. (Dover, Mineola, NY, 2008) pp 89--103

    Google Scholar 

  2. J.W. Yeh and S.J. Lin and T.S. Chin and J.Y. Gan and S.K. Chen and T.T. Shun and C. H. Tsau and S. Y. Chou: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2533--2536.

    CAS  Google Scholar 

  3. D.R. Askeland, P.P. Fulay, and W.J. Wright: The Science and Engineering of Materials, 6th ed., Cengage Learning, Stamford, CT, 2011, pp. 113--155

    Google Scholar 

  4. D. Hull, D.J. Bacon, Introduction to dislocations, 5th ed. (Elsevier/Butterworth-Heinemann, Amsterdam, 2011) pp 1--21

    Google Scholar 

  5. H. Lyu and N. Taheri-Nassaj and H. M. Zbib: Philos. Mag., 2016, vol. 96, pp. 1883--1908.

    CAS  Google Scholar 

  6. E. Orowan: Proc. Phys. Soc., 1940, vol. 52(1), pp. 8--22.

    Google Scholar 

  7. H. Askari and M. R. Maughan and N. Abdolrahim and D. Sagapuram and D. F. Bahr and H. M. Zbib: Int. J. Plast., 2015, vol. 68, pp. 21--33.

    Google Scholar 

  8. H. Askari and J. P. Young and D. P. Field and G. Kridli and H. M. Zbib: Philosophical Magazine, 2014, 94, pp. 3353--3367.

    CAS  Google Scholar 

  9. D. Li and H. Zbib and X. Sun and M. Khaleel: Int. J. Plast., 2014, vol. 52, pp. 3--17.

    CAS  Google Scholar 

  10. H. Lyu and A. Ruimi and H. M. Zbib: Int. J. Plast., 2015, vol. 72, pp. 44--59.

    CAS  Google Scholar 

  11. O. Cazacu: Multiscale Modeling of Heterogenous Materials, 1st ed., Wiley, Hoboken, NJ, 2008, pp. 17--36

    Google Scholar 

  12. L. P. Evers and D. M. Parks and W. A. M. Brekelmans and M. G. D. Geers: J. Mech. Phys. Solids, 2002, vol. 50, pp. 2403--2424.

    CAS  Google Scholar 

  13. F. Roters and D. Raabe and G. Gottstein: Acta Mater., 2000, vol. 48, pp. 4181--4189.

    CAS  Google Scholar 

  14. T. Ohashi: Philos. Mag. Lett., 1997, vol. 75, pp. 51--58.

    CAS  Google Scholar 

  15. O. Rezvanian and M. Zikry and A. Rajendran: Mater. Sci. Eng. A, 2008, vol. 494, pp. 80--85.

    Google Scholar 

  16. A. Alankar and P. Eisenlohr and D. Raabe: Acta Mater., 2011, 59, pp. 7003--7009.

    CAS  Google Scholar 

  17. I. Beyerlein and C. Tomé: Int. J. Plast., 2008, vol. 24, pp. 867--895.

    CAS  Google Scholar 

  18. L. A. Zepeda-Ruiz and A. Stukowski and T. Oppelstrup and V. V. Bulatov: Nature, 2017, vol. 550, pp. 492--495.

    CAS  Google Scholar 

  19. M. Zaiser and M. C. Miguel and I. Groma: Phys. Rev. B, 2001, 64, pp. 224102.

    Google Scholar 

  20. M. Monavari and M. Zaiser: Mat. Th., 2018, 2, pp. 3.

    Google Scholar 

  21. H.A. Askari: PhD thesis, Washington State University, USA, 2014

  22. S. Sandfeld and M. Monavari and M. Zaiser: Model. Simul. Mater. Sci. Eng., 2013, vol. 21, pp. 085006.

    Google Scholar 

  23. A. Arsenlis and D. M. Parks: Acta Mater., 1999, vol. 47, pp. 1597--1611.

    CAS  Google Scholar 

  24. D. Walgraef and E. C. Aifantis: Int. J. Eng. Sci., 1985, vol. 23, pp. 1351--1358.

    CAS  Google Scholar 

  25. D. Walgraef and E. C. Aifantis: Int. J. Eng. Sci., 1985, vol. 23, pp. 1359--1364.

    CAS  Google Scholar 

  26. D. Walgraef and E. C. Aifantis: Int. J. Eng. Sci., 1985, vol. 23, pp. 1365--1372.

    CAS  Google Scholar 

  27. H. Lim and M. G. Lee and J. H. Kim and B. L. Adams and R. H. Wagoner: Int. J. Plast., 2011, vol. 27, pp. 1328--1354.

    CAS  Google Scholar 

  28. R.K. AbuAl-Rub, G.Z. Voyiadjis, Int. J. Plast. vol. 20, pp. 1139--1182 (2004)

    Google Scholar 

  29. H. M. Zbib and M. Rhee and J. P. Hirth: Int. J. Mech Sci., 1998, vol. 40, pp. 113--127.

    Google Scholar 

  30. N. Taheri-Nassaj and H. M. Zbib: J. Eng. Mater. Technol., 2016, vol. 138, pp. 041015.

    Google Scholar 

  31. M. Monavari and S. Schmitt and S. Sandfeld: Proc. Appl. Math. Mech., 2013, vol. 13, pp. 263--264.

    Google Scholar 

  32. W.D. Callister: Materials science and engineering: an introduction, 7th ed. Wiley, New York, NY, 2007, pp 174--207

    Google Scholar 

  33. R. Asaro and A. Needleman: Acta Metall., 1985, vol. 33, pp. 923--953.

    CAS  Google Scholar 

  34. G. Taylor: Journal of the Institute of Metals, 1938, vol. 62, pp. 307--324.

    Google Scholar 

  35. G. I. Taylor: Proc. R. Soc. London Ser. A, 1934, vol. 145, pp. 362--387.

    CAS  Google Scholar 

  36. J. Bishop and R. Hill: Lond. Edinb. Dubl. Phil. Mag., 1951, vol. 42, pp. 414--427.

    CAS  Google Scholar 

  37. H. Wang, P. D. Wu, C. N. Tomé and Y. Huang: J. Mech. Phys. Solids, 2010, vol. 58, pp. 594--612.

    CAS  Google Scholar 

  38. R. A. Lebensohn and C. N. Tomé: Acta metall., 1993, vol. 41, pp. 2611--2624.

    CAS  Google Scholar 

  39. R. Lebensohn and C. N. Tomé: Mater. Sci. Eng., 1994, vol. 175, pp. 71--82.

    Google Scholar 

  40. G. Sachs: Z. Verein. Deut. Ing., 1928, vol. 72, pp. 734--736.

    Google Scholar 

  41. D. Raabe, F. Roters, F. Barlat, L.-Q. Chen, Continuum Scale Simulation of Engineering Materials: Fundamentals - Microstructures - Process Applications, 1st ed. (John Wiley and Sons, Berlin, Germany, 2004) pp 462--489

    Google Scholar 

  42. I. Simonovski, L. Cizelj, Grain-Scale Modeling Approaches for Polycrystalline Aggregates, 1st ed. (InTech, Rijeka, Croatia, 2012) pp 49--74

    Google Scholar 

  43. W. Gambin and F. Barlat: Int. J. Plast., 1997, vol. 13, pp. 75--85.

    CAS  Google Scholar 

  44. S. Ahzi and S. M’Guil and A. Agah-Tehrani: Mater. Sci. Forum, 2002, vol. 408, pp. 463--468.

    Google Scholar 

  45. S. Ahzi and S. M’Guil: Acta Mater., 2008, vol. 56, pp. 5359--5369.

    CAS  Google Scholar 

  46. A. Molinari and G. R. Canova and S. Ahzi: Acta Metall., 1987, vol. 35, pp. 2983--2994.

    CAS  Google Scholar 

  47. R. Hill: J. Mech. Phys. Solids, 1965, vol. 13, pp. 89--101.

    CAS  Google Scholar 

  48. J. D. Eshelby: Proc. Phys. Soc. Lond. Sec. A, 1957, vol. 241, pp. 376—396

    Google Scholar 

  49. R. J. Asaro: J. Appl. Mech., 1983, vol. 50, pp. 921--934.

    Google Scholar 

  50. F. Akasheh and H. M. Zbib and T. Ohashi: Philos. Mag., 2007, vol. 87, pp. 1307--1326.

    CAS  Google Scholar 

  51. T. Ohashi: Philos. Mag. A, 1994, vol. 70, pp. 793--803.

    CAS  Google Scholar 

  52. H. Lyu and A. Ruimi and D. P. Field and H. M. Zbib: Metall. and Mat. Trans. A, 2016, vol. 47, pp. 6608--6620.

    Google Scholar 

  53. E. O. Hall: Proc. Phys. Soc. Sec. B, 1951, vol. 64, pp. 747--753.

    Google Scholar 

  54. K. Hazeli and H. Askari and J. Cuadra and F. Streller and R. W. Carpick and H. M. Zbib and A. Kontsos: International Journal of Plasticity, 2015, 68, pp. 55--76.

    CAS  Google Scholar 

  55. R. Lebensohn, C. Tomé and P. Maudlin: J. Mech. Phys. Solids, 2004, vol. 52, pp. 249--278.

    Google Scholar 

  56. J. Jung and J. I. Yoon and J. H. Moon and H. K. Park and H. S. Kim: Comput. Mater. Sci., 2017, vol. 126, pp. 121--131.

    CAS  Google Scholar 

  57. A. Alankar and I. N. Mastorakos and D. P. Field: Acta Mater., 2009, vol. 57, pp. 5936--5946.

    CAS  Google Scholar 

  58. W. Hosford and R. Fleischer and W. Backofen: Acta Metall., 1960, vol. 8, pp. 187--199.

    CAS  Google Scholar 

  59. N. Tsuji and Y. Ito and Y. Saito and Y. Minamino: Scr. Mater., 2002, 47(12), pp. 893 -- 899.

    CAS  Google Scholar 

  60. Z. C. Cordero and B. E. Knight and C. A. Schuh: Int. Mater. Rev., 2016, 61(8), pp. 495--512.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Mastorakos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kermanshahimonfared, N., Askari, H. & Mastorakos, I. Plastic Behavior of Aluminum and Dislocation Patterning Based on Continuum Dislocation Dynamic (CDD). Metall Mater Trans A 51, 400–409 (2020). https://doi.org/10.1007/s11661-019-05512-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05512-6

Navigation