High-Temperature Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Zr and Ni Trialumnides Synthesized by In Situ Reaction

Abstract

High-temperature strengths and stabilities of Al3Ni and Al3Zr phases can be used to develop heat-resistant Al-matrix composites. In the current study, Al-1Mg-0.8Mn-0.8V alloy matrix composites are synthesized by in-situ reaction of K2ZrF6 salt and Ni powder to yield Al3Zr- and Al3Ni-reinforcing phases. The as-cast microstructural and room-temperature and high-temperature tensile properties of the composite are investigated. The microstructure of the composites contain α-Al, Al3Zr, Al3Ni, and Al10V phases. The eutectic mixture comprises alternating Al3Ni and α-Al phases with fine Al3Zr precipitates distributed in the interlamellar regions. The (2 pct Al3Zr + 15.2 pct Al3Ni)/Al-alloy composite shows the highest mechanical properties at room temperature, with a tensile strength of 198 MPa and a fracture strain of 6.55 pct. At 200 and 300 °C, tensile strengths of (2 pct Al3Zr + 13.3 pct Al3Ni)/Al-alloy and (2 pct Al3Zr + 15.2 pct Al3Ni)/Al-alloy composites reach 175 MPa and 166 MPa, and 191 MPa and 155 MPa, respectively. At 350 °C, the highest tensile strength of this composite family reaches 82 MPa, which surpasses some of the existing Al-Si alloys used in automotive pistons, suggesting its potential high-temperature applications. Analysis indicates that the fracture mode of the present composites is ductile. Transgranular cleavage fracture of coarse, brittle Al10V phase, and microvoid coalescence are the main failure mechanisms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Farkoosh, A.R., Grant Chen, X., and Pekguleryuz, M., Materials Science and Engineering: A, 2015, vol. 620, pp. 181-189.

    Google Scholar 

  2. 2.

    Kumar, S., Panwar, R.S., and Pandey, O.P., Metallurgical and Materials Transactions A, 2013, vol. 44(3), pp. 1548-1565.

    Google Scholar 

  3. 3.

    Pandey, A.B., Majumdar, B.S., and Miracle, D.B., Metallurgical and Materials Transactions A, 2000, vol. 31(3), pp. 921-936.

    CAS  Google Scholar 

  4. 4.

    Gautam, G., Ghose, A.K., and Chakrabarty, I., Metallurgical and Materials Transactions A, 2015, vol. 46(12), pp. 5952-5961.

    Google Scholar 

  5. 5.

    Asghar, Z., Requena, G., and Boller, E., Acta Materialia, 2011, vol. 59(16), pp. 6420-6432.

    CAS  Google Scholar 

  6. 6.

    Javidani, M. and Larouche, D., International Materials Reviews, 2014, vol. 59(3), pp. 132-158.

    CAS  Google Scholar 

  7. 7.

    Mohamed, A.M.A., Samuel, F.H., and Kahtani, S.A., Mater. Sci. Eng. A, 2013, vol. 577, pp. 64-72.

    CAS  Google Scholar 

  8. 8.

    Ye, H., Journal of Materials Engineering and Performance, 2003, vol. 12(3), pp. 288-297.

    CAS  Google Scholar 

  9. 9.

    Shaha, S.K., Czerwinski, F., Kasprzak, W., Friedman, J., and Chen, D.L., Materials Science and Engineering: A, 2016, vol. 652, pp. 353-364.

    CAS  Google Scholar 

  10. 10.

    Li, G., Liao, H., Suo, X., Tang, Y., Dixit, U.S., and Petrov, P., Materials Science and Engineering: A, 2018, vol. 709, pp. 90-96.

    CAS  Google Scholar 

  11. 11.

    11. Rakhmonov, J., Timelli, G., and Bonollo, F., Materials Characterization, 2017, vol. 128, pp. 100-108.

    CAS  Google Scholar 

  12. 12.

    12. Lee, H.M., Lee, J., and Lee, Z.-H., Scripta Metallurgica et Materialia, 1991, vol. 25(3), pp. 517-520.

    CAS  Google Scholar 

  13. 13.

    13. Fan, Y. and Makhlouf, M.M., Materials Science and Engineering: A, 2016, vol. 654, pp. 228-235.

    CAS  Google Scholar 

  14. 14.

    Rakhmonov, J., Timelli, G., and Bonollo, F., Advanced Engineering Materials, 2016, vol. 18(7), pp. 1096-1105.

    CAS  Google Scholar 

  15. 15.

    Knipling, K.E., Dunand, D.C., and Seidman, D.N., Zeitschrift für Metallkunde, 2006, vol. 97(3), pp. 246-265.

    CAS  Google Scholar 

  16. 16.

    Fan, Y.Y. and Makhlouf, M.M., Materials Science Forum, 2013, vol. 765, pp. 8-12.

    Google Scholar 

  17. 17.

    Gao, T., Li, D., Wei, Z., and Liu, X., Materials Science and Engineering: A, 2012, vol. 552, pp. 523-529.

    CAS  Google Scholar 

  18. 18.

    Hernandez-Sandoval, J., Garza-Elizondo, G.H., Samuel, A.M., Valtiierra, S., and Samuel, F.H., Materials & Design, 2014, vol. 58, pp. 89-101.

    CAS  Google Scholar 

  19. 19.

    Uan, J.Y. and Lui, T.S., Cast Metals, 2016, vol. 6(4), pp. 210-216.

    Google Scholar 

  20. 20.

    Ragab, M. and Salem, H.G., Powder Technology, 2012, vol. 222, pp. 108-116.

    Google Scholar 

  21. 21.

    Li, Y., Yang, Y., Wu, Y., Wang, L., and Liu, X., Materials Science and Engineering: A, 2010, vol. 527(26), pp. 7132-7137.

    Google Scholar 

  22. 22.

    Yang, Y., Yu, K., Li, Y., Zhao, D., and Liu, X., Materials & Design, 2012, vol. 33, pp. 220-225.

    CAS  Google Scholar 

  23. 23.

    Girisha, H.N., Sharma, K.V., International Journal of Scientific & Engineering Research, 2012, vol. 3(2), pp. 1-4.

    Google Scholar 

  24. 24.

    Nam, S.W., and Lee, D.H. (2000) Met. Mater., vol. 6(1), p. 13.

    CAS  Google Scholar 

  25. 25.

    Wang, F., Liu, Z., Qiu, D., Taylor, J.A., Easton, M.A., and Zhang, M.-X., Acta Materialia, 2013, vol. 61(1), pp. 360-370.

    CAS  Google Scholar 

  26. 26.

    Meng, F., Wang, Z., Zhao, Y., Zhang, D., and Zhang, W., Metals, 2016, vol. 7(1), pp. 10

    Google Scholar 

  27. 27.

    Gautam, G. and Mohan, A., Journal of Alloys and Compounds, 2015, vol. 649, pp. 174-183.

    CAS  Google Scholar 

  28. 28.

    Yang, H.-j., Zhao, Y.-t., Chen, G., Zhang, S.-l., and Chen, D.-b., Transactions of Nonferrous Metals Society of China, 2012, vol. 22(3), pp. 571-576.

    Google Scholar 

  29. 29.

    29. Lei, J., Xiaolu, W., Hui, L., Yutao, Z., Yonggang, Y., and Jianchao, C., Rare Metal Materials and Engineering, 2016, vol. 45(11), pp. 2798-2803.

    Google Scholar 

  30. 30.

    Wang, H., Li, G., Zhao, Y., and Zhang, Z., Journal of Alloys and Compounds, 2011, vol. 509(18), pp. 5696-5700.

    CAS  Google Scholar 

  31. 31.

    Fan, Y. and Makhlouf, M.M., Metallurgical and Materials Transactions A, 2015, vol. 46(9), pp. 3808-3812.

    Google Scholar 

  32. 32.

    Jones, D.R.H. and May, G.J., Acta Metall., 1975, vol. 23, 29-34.

    CAS  Google Scholar 

  33. 33.

    Davies, J.R., Courtney, T.H., and Przystupa, M.A., Metallurgical Transactions A, 1980, vol. 11(2), pp. 323-332.

    Google Scholar 

  34. 34.

    Uan, J.Y., Chen, L.H., and Lui, T.S., Acta Materialia, 2001, vol. 49(2), pp. 313-320.

    CAS  Google Scholar 

  35. 35.

    GmbH, M. (2016) Pistons and Engine Testing, 2nd edn. Springer, Stuttgart.

    Google Scholar 

  36. 36.

    Feng, J., Ye, B., Zuo, L., Qi, R., Wang, Q., Jiang, H., Huang, R., and Ding, W., Materials Science and Engineering: A, 2017, vol. 706, pp. 27-37.

    CAS  Google Scholar 

  37. 37.

    Yang, Y., Zhong, S.-Y., Chen, Z., Wang, M., Ma, N., and Wang, H., Journal of Alloys and Compounds, 2015, vol. 647, pp. 63-69.

    CAS  Google Scholar 

  38. 38.

    38. Wang, E.R., Hui, X.D., and Chen, G.L., Materials & Design, 2011, vol. 32(8-9), pp. 4333-4340.

    CAS  Google Scholar 

  39. 39.

    Qian, Z., Liu, X., Zhao, D., and Zhang, G., Materials Letters, 2008, vol. 62(14), pp. 2146-2149.

    Google Scholar 

  40. 40.

    Hatano, T., Physical Review B, 2006, vol. 74(2), pp. 020102(R)

    Google Scholar 

  41. 41.

    41. Wang, X., Zhao, Y., Chen, G., Cheng, X., Zhang, H., and Zhang, Z., Rare Metal Materials and Engineering, 2007, vol. 36(2), pp. 259-263.

    Google Scholar 

  42. 42.

    42. Yamashita, K., Fujimoto, I., Murakumo, T., Kumal, S., and Sato, A., Philosophical Magazine A, 2000, vol. 80(1), pp. 219-235.

    CAS  Google Scholar 

  43. 43.

    Peng, G., Tietao, Z., Xiaoqing, X., Zhi, G., and Li, C., Rare Metal Materials and Engineering, 2013, vol. 42(1), pp. 6-13.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the supports received from the Guangxi Natural Science Foundation (Grant No. 2016GXNSFAA380223), the Guangxi University Research Fund Project (Grant No. XJZ100343), and the Innovation Drive Development Foundation of Guangxi (Grant No. AA17202011). NG acknowledges the US-Egypt Cooperative Research Project (Award # OISE 1445686). Jieming Wen is thanked for providing the high-temperature electronic universal testing machine for the tensile test.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikhil Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 28, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Zhang, S., Yang, Y. et al. High-Temperature Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Zr and Ni Trialumnides Synthesized by In Situ Reaction. Metall Mater Trans A 51, 214–225 (2020). https://doi.org/10.1007/s11661-019-05511-7

Download citation