Skip to main content
Log in

Rapid Solidification and Non-equilibrium Phase Constitution in Laser Powder Bed Fusion (LPBF) of AlSi10Mg Alloy: Analysis of Nano-precipitates, Eutectic Phases, and Hardness Evolution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The non-equilibrium phase evolution during laser powder bed fusion (LPBF) of AlSi10Mg alloy is thoroughly characterized and analyzed by means of advanced electron microscopy and analytical simulation of rapid solidification phenomenon. The evolution of microstructural strengthening agents such as inter-cellular eutectic phase and intra-cellular precipitates is presented in correspondence with the local variation of cellular/dendritic solidification patterns within a typical melt pool. The eutectic phase exhibits two different morphologies: lamellar and fibrous. As with the cell size variation, the overall volume fraction of eutectic phase and the lamella spacing is shown to gradually decrease by moving away from the melt-pool boundary (MPB), i.e., through crossing over from a coarse to a fine cellular zone. The eutectic-free regions within the α-Al cells contain a large number density of nano-sized precipitates that are predominantly Si-rich and are either fully or semi-coherent with the Al matrix. The formation of nano-precipitates is linked to the increased (non-equilibrium) solubility limits of α-Al cells due to the rapid solidification effect. For the first time, we identify such nano-precipitates with non-equilibrium crystal structures and morphologies: “Spheres” and “Ellipsoids” with Face Centered Cubic (FCC), and “Plates” and “Needles” with a Diamond Cubic (DC) superlattice structure that emerges from within the Al matrix. The microstructure in the heat-affected zone (HAZ) right underneath the MPB exhibits an absence of cell boundaries and eutectic phases while consisting primarily of large Si-rich and Mg-rich precipitates. Finally, the local variation of nano-hardness across a solidified melt pool is shown to correlate well with the corresponding profile of microstructural refinement, i.e., exhibiting a minimum at the HAZ and a peak at around the melt-pool centerline. The findings here can significantly advance the state of knowledge for the strengthening behavior in an as-built LPBF-processed AlSi10Mg alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Hadadzadeh, B.S. Amirkhiz, J. Li, A. Odeshi, M. Mohammadi (2018) Mater. Sci. Eng. A, vol. 722, pp. 263-268

    CAS  Google Scholar 

  2. [2] H. Qin, V. Fallah, Q. Dong, M. Brochu, M.R. Daymond, M. Gallerneault, Mater. Charact., 2018, vol. 145, pp. 29-38

    CAS  Google Scholar 

  3. [3] L. Thijs, K. Kempen, J.-P. Kruth, J. Van Humbeeck, Acta Mater., 2013, vol. 61, pp. 1809-1819

    CAS  Google Scholar 

  4. [4] S. Marola, D. Manfredi, G. Fiore, M.G. Poletti, M. Lombardi, P. Fino, L. Battezzati, J. Alloys Compd., 2018, vol. 742, pp. 271-279

    CAS  Google Scholar 

  5. [5] M. Tang, P.C. Pistorius, S. Narra, J.L. Beuth, JOM, 2016, vol. 68, pp. 960-966

    CAS  Google Scholar 

  6. V. Fallah, D.J. Lloyd, M. Gallerneault (2017) Mater. Sci. Eng. A, vol. 698, pp. 88-97

    CAS  Google Scholar 

  7. J.A. Sarreal, G.J. ABbaschian (1986) Metall. Trans. A, vol. 17, pp. 2063-2073

    CAS  Google Scholar 

  8. [8] Y.E. Kalay, L.S. Chumbley, I.E. Anderson, R.E. Napolitano, Metall. Mater. Trans. A, 2007, vol. 38, pp. 1452-1457

    CAS  Google Scholar 

  9. [9] J.D. Roehling, D.R. Coughlin, J.W. Gibbs, J.K. Baldwin, J.C.E. Mertens, G.H. Campbell, A.J. Clarke, J.T. McKeown, Acta Mater., 2017, vol. 131, pp. 22-30

    CAS  Google Scholar 

  10. Z. Xiong, S. Liu, S. Li, Y. Shi, Y. Yang, R. Misra (2019) Mater. Sci. Eng., A, vol. 740, pp. 148-156

    Google Scholar 

  11. [11] N. Read, W. Wang, K. Essa, M.M. Attallah, Mater. Des., 2015, vol. 65, pp. 417-424

    CAS  Google Scholar 

  12. [12] K. Kempen, L. Thijs, J. Van Humbeeck, J.-P. Kruth, Phys. Procedia, 2012, vol. 39, pp. 439-446

    CAS  Google Scholar 

  13. [13] E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Mater. Des., 2012, vol. 34, pp. 159-169

    CAS  Google Scholar 

  14. [14] D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, Phys. Procedia, 2011, vol. 12, pp. 271-278

    CAS  Google Scholar 

  15. [15] T.G. Holesinger, J.S. Carpenter, T.J. Lienert, B.M. Patterson, P.A. Papin, H. Swenson, N.L. Cordes, JOM, 2016, vol. 68, pp. 1000-1011

    Google Scholar 

  16. [16] E. Louvis, P. Fox, C.J. Sutcliffe, J. Mater. Process. Technol., 2011, vol. 211, pp. 275-284

    CAS  Google Scholar 

  17. [17] E. Olakanmi, J. Mater. Process. Technol., 2013, vol. 213, pp. 1387-1405

    CAS  Google Scholar 

  18. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, Y. Shi (2016) Mater. Sci. Eng., A, vol. 663, pp. 116-125

    CAS  Google Scholar 

  19. [19] N.T. Aboulkhair, C. Tuck, I. Ashcroft, I. Maskery, N.M. Everitt, Metall. Mater. Trans. A, 2015, vol. 46, pp. 3337-3341

    Google Scholar 

  20. [20] J.H. Rao, Y. Zhang, K. Zhang, A. Huang, C.H. Davies, X. Wu, Scripta Materialia, 2019, vol. 160, pp. 66-69

    CAS  Google Scholar 

  21. [21] V. Fallah, A. Korinek, B. Raeisinia, M. Gallerneault, S. Esmaeili, Mater. Sci. Forum, 2014, vol. 794-796, pp. 933-938

    Google Scholar 

  22. [22] V. Fallah, A. Korinek, N. Ofori-Opoku, B. Raeisinia, M. Gallerneault, N. Provatas, S. Esmaeili, Acta Mater., 2015, vol. 82, pp. 457-467

    CAS  Google Scholar 

  23. [23] V. Fallah, B. Langelier, N. Ofori-Opoku, B. Raeisinia, N. Provatas, S. Esmaeili, Acta Mater., 2016, vol. 103, pp. 290-300

    CAS  Google Scholar 

  24. [24] V. Fallah, A. Korinek, N. Ofori-Opoku, N. Provatas, S. Esmaeili, Acta Mater., 2013, vol. 61, pp. 6372-6386

    CAS  Google Scholar 

  25. V. Fallah, A. Korinek, N. Ofori-Opoku, N. Provatas, S. Esmaeili (2015) Acta Mater. vol. 2015, pp. 470–472

    Google Scholar 

  26. [26] V. Fallah, M. Alimardani, S.F. Corbin, A. Khajepour, Comput. Mater. Sci., 2011, vol. 50, pp. 2124-2134

    CAS  Google Scholar 

  27. [27] V. Fallah, M. Amoorezaei, N. Provatas, S. Corbin, A. Khajepour, Acta Mater., 2012, vol. 60, pp. 1633-1646

    CAS  Google Scholar 

  28. [28] R. Trivedi, F. Jin, I.E. Anderson, Acta Mater., 2003, vol. 51, pp. 289-300

    CAS  Google Scholar 

  29. [29] W. Kurz, R. Trivedi, Metall. Trans. A, 1991, vol. 22, pp. 3051-3057

    CAS  Google Scholar 

  30. [30] L.M. Hogan, H. Song, Metall. Mater. Trans. A, 1987, vol. 18, pp. 707-713

    Google Scholar 

  31. D.M. Stefanescu, Science and Engineering of Casting Solidification. Springer, New York 2015.

    Google Scholar 

  32. [32] M.C. Flemings, Metallurgical transactions, 1974, vol. 5, pp. 2121-2134

    CAS  Google Scholar 

  33. [33] M.H. Burden, J.D. Hunt, J. Cryst. Growth, 1974, vol. 22, pp. 99-108

    CAS  Google Scholar 

  34. [34] M.H. Burden, J.D. Hunt, J. Cryst. Growth, 1974, vol. 22, pp. 109-116

    CAS  Google Scholar 

  35. [35] J. Hunt, K. Jackson, Trans. Metall. Soc. AIME., 1966, vol. 236, pp. 843-852

    CAS  Google Scholar 

  36. [36] M. Gündüz, J.D. Hunt, Acta Metall., 1985, vol. 33, pp. 1651-1672

    Google Scholar 

  37. [37] S.-i. Fujikawa, K.-i. Hirano, Y. Fukushima, Metall. Trans. A, 1978, vol. 9, pp. 1811-1815

    CAS  Google Scholar 

  38. S.J. Andersen, C.D. Marioara, R. Vissers, A. Frøseth, H.W. Zandbergen (2007) Mater. Sci. Eng. A, vol. 444, pp. 157-169

    Google Scholar 

  39. [39] H.W. Zandbergen, S.J. Andersen, J. Jansen, Science, 1997, vol. 277, pp. 1221-1225

    CAS  Google Scholar 

  40. [40] S.J. Andersen, H.W. Zandbergen, J. Jansen, C. TrÆholt, U. Tundal, O. Reiso, Acta Mater., 1998, vol. 46, pp. 3283-3298

    CAS  Google Scholar 

  41. [41] K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio, S. Ikeno, Journal of Materials Science, 2000, vol. 35, pp. 179-189

    CAS  Google Scholar 

  42. S.J. Andersen, C.D. Marioara, A. Frøseth, R. Vissers, H.W. Zandbergen (2005) Mater. Sci. Eng. A, vol. 390, pp. 127-138

    Google Scholar 

  43. [43] M.H. Jacobs, Philosophical Magazine, 2006, vol. 26, pp. 1-13

    Google Scholar 

  44. [44] R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, Acta Mater., 2007, vol. 55, pp. 3815-3823

    CAS  Google Scholar 

  45. [45] M. Liu, N. Takata, A. Suzuki, M. Kobashi, Mater. Des., 2018, vol. 157, pp. 478-491

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the NSERC Discovery Grant program and the Queen’s University Faculty of Engineering and Applied Science Dean’s Research Fund. We are grateful for the useful discussions with Dr. Mark Gallerneault that took place during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingshan Dong or Vahid Fallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 9, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Dong, Q., Fallah, V. et al. Rapid Solidification and Non-equilibrium Phase Constitution in Laser Powder Bed Fusion (LPBF) of AlSi10Mg Alloy: Analysis of Nano-precipitates, Eutectic Phases, and Hardness Evolution. Metall Mater Trans A 51, 448–466 (2020). https://doi.org/10.1007/s11661-019-05505-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05505-5

Navigation