Transmission Electron Microscopy Studies of Plasma Arc-Welded DP600 Dual-Phase Steel in Keyhole Mode


Microstructural characteristics of keyhole plasma arc-welded DP600 steel were analyzed using optical microscopy, scanning electron microscopy, and analytical transmission electron microscopy. The fusion zone (FZ) was observed to consist of allotriomorphic, Widmanstätten, and acicular ferrite along with bainite and martensite leading to enhancement in the hardness compared with the base metal. The coarse-grain HAZ consisted of bainite and martensite, while the fine-grain HAZ consisted of bainitic ferrite and tempered martensite. The sub-critical HAZ was found to consist of tempered martensite with reduced density of dislocations and carbide precipitation. This softening resulted in yield point phenomena and failure in the sub-critical HAZ during the transverse tensile test of welds. The non-isothermal tempering resulted in retarded cementite precipitation due to inadequate time for diffusion of carbon, which led to the lowest hardness of 168 HV0.5 in the sub-critical HAZ. The different features in the FZ and HAZ and their correlation with mechanical properties are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Y. Liu, D. Dong, L. Wang, X. Chu, P. Wang, and M. Jin: Mater. Sci. Eng. A, 2015, vol. 627, pp. 296–305.

    CAS  Google Scholar 

  2. 2.

    D. Dong, Y. Liu, Y. Yang, J. Li, M. Ma, and T. Jiang: Mater. Sci. Eng. A, 2014, vol. 594, pp. 17–25.

    CAS  Google Scholar 

  3. 3.

    R. Ashiri, H. Mostaan, and Y. D. Park: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, vol. 49A, pp. 6161–72.

    Google Scholar 

  4. 4.

    R. Ashiri, M.A. Haque, C.W. Ji, M. Shamanian, H.R. Salimijazi, and Y. Do Park: Scr. Mater., 2015, vol. 109, pp. 6–10.

    CAS  Google Scholar 

  5. 5.

    R. Ashiri, M. Shamanian, H.R. Salimijazi, M.A. Haque, J.H. Bae, C.W. Ji, K.G. Chin, and Y. Do Park: Scr. Mater., 2016, vol. 114, pp. 41–7.

    CAS  Google Scholar 

  6. 6.

    M.R.U. Ahsan, Y.R. Kim, C.H. Kim, J.W. Kim, R. Ashiri, and Y.D. Park: Sci. Technol. Weld. Join., 2016, vol. 21, pp. 209–15.

    CAS  Google Scholar 

  7. 7.

    S. Li, Y. Kang, G. Zhu, and S. Kuang: Mater. Des., 2015, vol. 85, pp. 180–9.

    CAS  Google Scholar 

  8. 8.

    H. Ashrafi, M. Shamanian, R. Emadi, and N. Saeidi: J. Mater. Eng. Perform., 2017, vol. 26, pp. 1414–23.

    CAS  Google Scholar 

  9. 9.

    G.K. Ahiale, Y.-J. Oh, W.-D. Choi, K.-B. Lee, J.-G. Jung, and S.W. Nam: Met. Mater. Int., 2013, vol. 19, pp. 933–9.

    CAS  Google Scholar 

  10. 10.

    N. Sreenivasan, M. Xia, S. Lawson, and Y. Zhou: J. Eng. Mater. Technol., 2008, vol. 130, p. 041004.

    Google Scholar 

  11. 11.

    S.K. Panda, N. Sreenivasan, M.L. Kuntz, and Y. Zhou: J. Eng. Mater. Technol., 2008, vol. 130, p. 041003.

    Google Scholar 

  12. 12.

    J.H. Lee, S.H. Park, H.S. Kwon, G.S. Kim, and C.S. Lee: Mater. Des., 2014, vol. 64, pp. 559–65.

    CAS  Google Scholar 

  13. 13.

    J. Wang, L. Yang, M. Sun, T. Liu, and H. Li: Mater. Des., 2016, vol. 97, pp. 118–25.

    CAS  Google Scholar 

  14. 14.

    V.H. Baltazar, S.S. Nayak, and Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3115–29.

    Google Scholar 

  15. 15.

    A.A. Kuril, G.D.J. Ram, and S.R. Bakshi: J. Mater. Process. Technol., 2019, vol. 270, pp. 28–36.

    CAS  Google Scholar 

  16. 16.

    C.N. Li, G. Yuan, F.Q. Ji, D.S. Ren, and G.D. Wang: Mater. Sci. Eng. A, 2016, vol. 665, pp. 98–107.

    CAS  Google Scholar 

  17. 17.

    J. Moerman, P.R. Triguero, C. Tasan, and P. van Liempt: Mater. Sci. Forum, 2011, vol. 702–703, pp. 485–8.

    Google Scholar 

  18. 18.

    S. Gündüz and A. Tosun: Mater. Des., 2008, vol. 29, pp. 1914–8.

    Google Scholar 

  19. 19.

    J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto: Acta Mater., 2011, vol. 59, pp. 4387–94.

    CAS  Google Scholar 

  20. 20.

    J.K. Martikainen and T.J.I. Moisio: Weld. J. - Weld. Res. Suppl., 1993, 72, pp. 329–40.

    CAS  Google Scholar 

  21. 21.

    S. SalimiBeni, M. Atapour, M.R. Salmani, and R. Ashiri: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2218–34.

    Google Scholar 

  22. 22.

    C.B. Dallum and D.L. Olson: Weld. J. Res. Suppl., 1989, vol. 68, pp. 198-205.

    Google Scholar 

  23. 23.

    H.K.D.H. Bhadeshia and L.E. Svensson: Math. Model. Weld Phenomena, H. Cerjak E.K. Easterling, eds., Inst. Mater. London, 1993, pp. 109–82.

  24. 24.

    R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano: Mater. Sci. Eng. A, 2005, vol. 394, pp. 339–52.

    Google Scholar 

  25. 25.

    K. Ichikawa, Y. Horii, R. Motomatsu, M. Yamaguchi, and N. Yurioka: J. Japan Weld. Soc., 1996, vol. 14, pp. 27–32.

    CAS  Google Scholar 

  26. 26.

    S. Okaguchi, H. Ohtani, and Y. Ohmori: Mater. Trans., 1991, vol. 32, pp. 697–704.

    CAS  Google Scholar 

  27. 27.

    Y. Ohmori, H. Ohtsubo, Y.C. Jung, S. Okaguchi, and H. Ohtani: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1981–9.

    CAS  Google Scholar 

  28. 28.

    J. Hu, L.X. Du, M. Zang, S.J. Yin, Y.G. Wang, X.Y. Qi, X.H. Gao, and R.D.K. Misra: Mater. Charact., 2016, vol. 118, pp. 446–53.

    CAS  Google Scholar 

  29. 29.

    J.R. Yang, Huang C Y, and Huang C F: J. Mater. Sci. Lett., 1993, vol. 12, pp. 1290–3.

    CAS  Google Scholar 

  30. 30.

    H.K.D.H. Bhadeshia: PhD Thesis. University of Cambridge, 1979.

  31. 31.

    J. Wang and S. Van der Zwaag: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1527–39.

    CAS  Google Scholar 

  32. 32.

    X.J. Liang, M.J. Hua, and A.J. DeArdo: Mater. Sci. Forum, 2014, vol. 783–786, pp. 704–12.

    Google Scholar 

  33. 33.

    J. Kobayashi, S.-M. Song, and K. Sugimoto: ISIJ Int., 2012, vol. 52, pp. 1124–9.

    CAS  Google Scholar 

  34. 34.

    N.-R. V. Bangaru and A.K. Sachdev: Metall. Trans. A, 1982, vol. 13A, pp. 1899–906.

    Google Scholar 

  35. 35.

    J. Smalc-Koziorowska, E. Jezierska, and W. Świątnicki: Solid State Phenom., 2012, vol. 186, pp. 301–4.

    CAS  Google Scholar 

  36. 36.

    H. Beladi, I.B. Timokhina, P.D. Hodgson, and Y. Adachi: Scr. Mater., 2009, vol. 60, pp. 455–8.

    CAS  Google Scholar 

  37. 37.

    F.G. Caballero, M.K. Miller, and C. Garcia-Mateo: Mater. Chem. Phys., 2014, vol. 146, pp. 50–7.

    CAS  Google Scholar 

  38. 38.

    M.Y. Tu, C.A. Hsu, W.H. Wang, and Y.F. Hsu: Mater. Chem. Phys., 2008, vol. 107, pp. 418–25.

    CAS  Google Scholar 

  39. 39.

    T. Furuhara, K. Kobayashi, and T. Maki: ISIJ Int., 2004, vol. 44, pp. 1937–44.

    CAS  Google Scholar 

  40. 40.

    A. Nagao, K. Hayashi, K. Oi, S. Mitao, and N. Shikanai: Mater. Sci. Forum, 2007, vol. 539–543, pp. 4720–5.

    Google Scholar 

  41. 41.

    S.T. Ahn, D.S. Kim, and W.J. Nam: J. Mater. Process. Technol., 2005, vol. 160, pp. 54–8.

    CAS  Google Scholar 

  42. 42.

    Z.J. Xie, Y.P. Fang, Y. Cui, X.M. Wang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Technol., 2016, vol. 32, pp. 691–6.

    CAS  Google Scholar 

  43. 43.

    E. Biro, J.R. McDermid, J.D. Embury, and Y. Zhou: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, vol. 41, pp. 2348–56.

    Google Scholar 

Download references


One of the authors (S.R. Bakshi) acknowledges funding from Institute Research and Development Award (Junior Level) of IIT Madras (MET/16-17/839/RFIR/SRRB) for carrying out the work. Authors also acknowledge funding received from Centre of Excellence in Steel Technology (MET/16-17/148/MSTE/HODX) for funding the studies.

Author information



Corresponding author

Correspondence to Srinivasa R. Bakshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 12, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuril, A.A., Jagannatham, M., Ram, G.D.J. et al. Transmission Electron Microscopy Studies of Plasma Arc-Welded DP600 Dual-Phase Steel in Keyhole Mode. Metall Mater Trans A 50, 5689–5699 (2019).

Download citation