Specific Features of Microstructural Evolution During Hot Rolling of the As-Cast Magnesium-Rich Aluminum Alloys with Added Transition Metal Elements

Abstract

This study addresses specific features of microstructural development during the rolling of the as-cast magnesium-rich aluminum alloys with added transition metal elements, such as Zr and Sc. For investigation purposes, three magnesium-rich aluminum alloys were chosen: 5182 without added Zr and Sc, 1565 ch with added Zr and 1570 with added Zr and Sc. Optical microscopy, X-ray texture analysis, electron microscopy, and electron backscattered diffraction methods were used in this study. This study demonstrates that two completely different patterns can be observed in the microstructure during deformation. Two zones with different subgrain sizes are formed when the alloy tends to recrystallize. Without recrystallization, the structure develops homogeneously. Recrystallization also has a significant effect on the texture formation. If recrystallization does not occur, a strong β-fiber texture is formed. However, this type of texture tends not to form during inter-deformation intervals when recrystallization occurs. Second-phase particles have the strongest effect on microstructural evolution during the hot deformation of the as-cast structure. Fine particles are capable of inhibiting recrystallization. Coarse particles initiate the PSN (particle-stimulated nucleation) mechanism and suppress the growth of the cubic texture component during recrystallization. An adequate combination of coarse and fine particles enables either better homogeneity of the structure distribution in the deformation center or better grain structure refinement.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    V. V. Zakharov: Met. Sci. Heat Treat., 2017, vol. 59, pp. 67–71.

    CAS  Google Scholar 

  2. 2.

    J. Hirsch: Mater. Trans., 2011, vol. 52, pp. 818–24.

    CAS  Google Scholar 

  3. 3.

    M. A. Wells, I. V. Samarasekera, J. K. Brimacombe, E. B. Hawbolt, and D. J. Lloyd: Metall. Mater. Trans. B., 1998, vol. 29, pp. 611–20.

    CAS  Google Scholar 

  4. 4.

    E. V. Aryshenskii, V. Y. Aryshenskii, A. F. Grechnikova, and E. D. Beglov: Met. Sci. Heat Treat., 2014, vol. 56, pp. 347–52.

    CAS  Google Scholar 

  5. 5.

    J. Hirsch: Fundamentals of Aluminium Metallurgy. Woodhead Publishing, Sawston, 2011, pp. 719–46.

    Google Scholar 

  6. 6.

    M. A. Wells, I. V. Samarasekera, J. K. Brimacombe, E. B. Hawbolt, and D. J. Lloyd: Metall. Mater. Trans. B., 1998, vol. 29, pp. 709–19.

    CAS  Google Scholar 

  7. 7.

    H. E. Vatne, T. Furu, R. Ørsund, and E. Nes: Acta Mater., 1996, vol. 44, pp. 4463–73.

    CAS  Google Scholar 

  8. 8.

    O. Engler and H. E. Vatne: JOM, 1998, vol. 50, pp. 23–27.

    CAS  Google Scholar 

  9. 9.

    C. Schäfer, V. Mohles, and G. Gottstein: Applications of Texture Analysis. Wiley, New York 2008, pp. 537–45

    Google Scholar 

  10. 10.

    O. Dalland and E. Nes: Acta Mater., 1996, vol. 44, pp. 1389–411.

    Google Scholar 

  11. 11.

    O. Engler: Mater. Sci. Forum., 2007, vol. 550, pp. 23–34.

    CAS  Google Scholar 

  12. 12.

    E. Povoden-Karadeniz, P. Lang, K. I. Öksüz, W. Jun, S. Rafiezadeh, A. Falahati, E. Kozeschnik: Mater. Sci. Forum., 2013, vol. 765, pp. 476-80

    Google Scholar 

  13. 13.

    P. Lang, T. Weisz, M. R. Ahmadi, E. Povoden-Karadeniz, A. Falahati, & E. Kozeschnik: Adv. Mater. Res., 2014, vol. 922, pp. 406-411

    Google Scholar 

  14. 14.

    M. Piotr, R. Bureau, C. Poletti, C. Sommitsch, P. Warczok, and E. Kozeschnik. Key Eng. Mater., 2015, vol. 651-653. pp. 1319-24

    Google Scholar 

  15. 15.

    F. J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena, Elsevier, New York, 2012

    Google Scholar 

  16. 16.

    A. V. Andrianov, E. G. Kandalova, E. V. Aryshensky, and A. F. Grechnikova: Key Eng. Mater., 2016, vol. 684. pp. 398-405

    Google Scholar 

  17. 17.

    Sukhopar, Olga, and Günter Gottstein: Mater. Sci. Forum., 2012, vol. 715, pp. 455–60.

    Google Scholar 

  18. 18.

    O. Engler: Mater. Sci. Forum., 2003, vol. 426-432, pp. 3655–60.

    Google Scholar 

  19. 19.

    C. Schäfer, G. Pomana, V. Mohles, G. Gottstein, O. Engler, and J. Hirsch: Adv. Eng. Mater., 2010, vol. 12, pp. 131–40.

    Google Scholar 

  20. 20.

    J. Hirsch: Mater. Sci. Forum., 2005, vol. 495, pp. 1565–72.

    Google Scholar 

  21. 21.

    O. Engler, L. Löchte, and J. Hirsch: Acta Mater., 2007, vol. 55, pp. 5449–63.

    CAS  Google Scholar 

  22. 22.

    M. Crumbach, M. Goerdeler, and G. Gottstein: Acta Mater., 2006, vol. 54, pp. 3275–89.

    CAS  Google Scholar 

  23. 23.

    Gottstein, G., and V. Mohles.: In Proceedings of the 1st World Congress on Integrated Computational Materials Engineering (ICME), 2011, p. 9.

  24. 24.

    J. Hjelen, R. Ørsund, and E. Nes: Acta Metall. Mater., 1991, vol. 39, pp. 1377–404.

    CAS  Google Scholar 

  25. 25.

    V. G. Davydov, V. I. Elagin, V. V. Zakharov, and D. Rostoval: Met. Sci. Heat Treat., 1996, vol. 38, pp. 347–52.

    Google Scholar 

  26. 26.

    M. S. Kaiser, S. Datta, A. Roychowdhury, and M. K. Banerjee: Mater. Manuf. Processes., 2007, vol. 23, pp. 74–81.

    Google Scholar 

  27. 27.

    A. Patra, S. Ganguly, P. P. Chattopadhyay, and S. Datta: Multidiscip. Model. Mater. Struct., 2015, vol. 11, pp. 401–12.

    CAS  Google Scholar 

  28. 28.

    A. W. Yu, C. G. Yang, S. L. Wang, F. C. Liu, and Q. Zheng: Appl. Mech. Mater., 2014, vol. 508, pp. 16–21.

    Google Scholar 

  29. 29.

    F. Wang, D. Qiu, Z. L. Liu, J. A. Taylor, M. A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 5636–45.

    CAS  Google Scholar 

  30. 30.

    H.-y. Li, D.-w. Li, Z.-x. Zhu, B.-a. Chen, X. Chen, C.-l. Yang, H.-y. Zhang, and W. Kang: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 3059–69.

    CAS  Google Scholar 

  31. 31.

    F. Wang, D. Qiu, Z.-l. Liu, J. Taylor, M. Easton, and M.-X. Zhang: Trans. Nonferr. Met. Soc. China, 2014, vol. 24, pp. 2034–40.

    CAS  Google Scholar 

  32. 32.

    F. Wang, Z. Liu, D. Qiu, J. A. Taylor, M. A. Easton, and M.-X. Zhang: Acta Mater., 2013, vol. 61, pp. 360–70.

    CAS  Google Scholar 

  33. 33.

    E. Nes, N. Ryum, and O. Hunderi: Acta Metall., 1985, vol. 33, pp. 11–22.

    CAS  Google Scholar 

  34. 34.

    O. Engler, Z. Liu, and K. Kuhnke: J. Alloys Compd. 2013, vol. 560, pp. 111–22.

    CAS  Google Scholar 

  35. 35.

    O. Engler and S. Miller-Jupp: J. Alloys Compd. 2016, vol. 689, pp. 998–1010.

    CAS  Google Scholar 

  36. 36.

    H. Zhang, D. S. Peng, L. B. Yang, and L. P. Meng: Trans. Nonferrous Met. Soc. China., 2001, vol. 11. pp. 13-17.

    CAS  Google Scholar 

  37. 37.

    B. Forbord, H. Hallem, N. Ryum, and K. Marthinsen: Mat. Sci. Eng. A., 2004, vol. 387-389, pp. 936–39.

    Google Scholar 

  38. 38.

    J. Røyset, N. Ryum: Int. Mater. Rev. 2005. vol. 50, pp. 19–44

    Google Scholar 

  39. 39.

    Aryshenskii, E., Hirsch, J., Yashin, V., Sergei, K., & Kawalla, R. (2018). J. Mater. Eng. Perform., vol. 27, 6780-99.

    CAS  Google Scholar 

  40. 40.

    K. Sjølstad.: Deformation and softening behaviour of commercial AlMn-alloys: Experiments and modelling. PhD thesis, Norwegian, 2003.

  41. 41.

    H. E. Vatne and M. A. Wells: Can. Metall. Q. 2003, vol. 42, pp. 79–88.

    CAS  Google Scholar 

  42. 42.

    O. Engler, C. N. Tomé, and M.-Y. Huh: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2299–315.

    CAS  Google Scholar 

  43. 43.

    W. B. Hutchinson: Acta Metall.,, 1989, vol. 37, pp. 1047–56.

    CAS  Google Scholar 

  44. 44.

    O. Engler: Acta Mater., 1998, vol. 46, pp. 1555–68.

    CAS  Google Scholar 

  45. 45.

    Y. Filatov, V. Yelagin, and V. Zakharov: Mat. Sci. Eng. A., 2000, vol. 280, pp. 97–101.

    Google Scholar 

  46. 46.

    Engler, O., Hirsch, J., & Lücke, K. Acta Metall., 1989, vol. 37, pp. 2743–53.

    CAS  Google Scholar 

  47. 47.

    J. Hirsch, K. Lücke: Overview No. 76: Acta Metall., 1988, vol. 36. pp. 2863-82.

    CAS  Google Scholar 

  48. 48.

    Hansen N., Jensen D. J. Metall. Mater. Trans. A., 1986, vol. 17. pp. 253-59.

    CAS  Google Scholar 

  49. 49.

    Randle, Valerie, and Olaf Engler. Introduction to texture analysis: macrotexture, microtexture and orientation mapping. CRC Press, Boca Raton, 2014.

    Google Scholar 

  50. 50.

    J. Hirsch: Mater. Sci. Forum., 2003, vol. 426-432, pp. 185–94.

    Google Scholar 

  51. 51.

    M. Cabibbo, S. Spigarelli, and E. Evangelista: Metall. Mater. Trans. A, 2004, vol. 35, pp. 293–300.

    CAS  Google Scholar 

  52. 52.

    B. I. Elagin, V. V. Zakharov, and T. D. Rostova: Met. Sci. Heat Treat., 1993, vol. 35. pp 317–319

    Google Scholar 

  53. 53.

    R. W. Hyland: Metall Mater Trans A, 1992, vol. 23., pp. 1947-1955

    CAS  Google Scholar 

  54. 54.

    A. Norman, P. Prangnell, and R. McEwen: Acta Mater., 1998, vol. 46, pp. 5715–32.

    CAS  Google Scholar 

  55. 55.

    Vatne, H. E., Ørsund, R., Marthinsen, K., & Nes, E. Metall. Mater. Trans. A, 1996, vol 27, pp. 4133-44.

    CAS  Google Scholar 

  56. 56.

    Aryshenskii, E., Kawalla, R., & Hirsch, J. Steel Res. Int, 2017, vol. 88, pp. 1700053.

    Google Scholar 

Download references

Acknowledgment

This study is funded by a grant provided by the Russian Science Foundation, Project 18-79-10099.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Aryshenskii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 9, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aryshenskii, E.V., Hirsch, J., Konovalov, S.V. et al. Specific Features of Microstructural Evolution During Hot Rolling of the As-Cast Magnesium-Rich Aluminum Alloys with Added Transition Metal Elements. Metall Mater Trans A 50, 5782–5799 (2019). https://doi.org/10.1007/s11661-019-05480-x

Download citation