Microstructure and Mechanical Behavior of ODS Stainless Steel Fabricated Using Cryomilling

Abstract

Oxide-dispersion-strengthened (ODS) stainless steels have been developed as structural materials for applications at elevated temperatures. In this study, water-atomized 316L stainless steel powder was cryomilled with various types of nanosized-oxide reinforcements. Conventional sintering and field-assisted sintering techniques (FAST) were used to consolidate the cryomilled powder. Mechanical properties, both in tension and compression, were evaluated for consolidated samples: samples made of cryomilled powders, as well as samples made of a mixture of cryomilled and coarse-grained atomized powders. The bimodal structure that evolved from such mixtures effectively toughened the ultrastrong cryomilled material. Microstructural analysis was carried out to determine the efficacy of the cryomilled powder. Results from the cryomilling experiments showed that a minimum grain size could be reached within 12 hours of milling. Our results showed that dispersion of the oxide phases during cryomilling occurred exclusively through physical mechanisms, which was different from that previously reported for room-temperature ball milling. The spatial distribution of the oxide dispersoids was found to be dependent on the evolution of internal surfaces during milling and on the type of oxide particle used. Finally, the influence of reinforcement on the mechanical behavior of the cryomilled material was analyzed using oxide-dispersion-strengthening and load-transfer-based strengthening mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    [1] C. C. Chan: Proc. IEEE, 2007, vol. 95, pp. 704–718.

    Article  Google Scholar 

  2. 2.

    [2] M. S. El-Genk and J.-M. Tournier: J. Nucl. Mater., 2005, vol. 340, pp. 93–112.

    CAS  Article  Google Scholar 

  3. 3.

    [3] S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, and S. Ohnuki: Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 115–120.

    Article  Google Scholar 

  4. 4.

    [4] T. Okuda and M. Fujiwara: J. Mater. Sci. Lett., 1995 vol. 14, pp. 1600–1603.

    CAS  Article  Google Scholar 

  5. 5.

    [5] C. Hin and B. D. Wirth: J. Nucl. Mater., 2010, vol. 402, pp. 30–37.

    CAS  Article  Google Scholar 

  6. 6.

    [6] J. R. Rieken, I. E. Anderson, M. J. Kramer, G. R. Odette, E. Stergar, and E. Haney: J. Nucl. Mater., 2012, vol. 428, pp. 65–75.

    CAS  Article  Google Scholar 

  7. 7.

    [7] Y. Chen, K. Sridharan, T. R. Allen, and S. Ukai: J. Nucl. Mater., 2006, vol. 359, pp. 50–58.

    CAS  Article  Google Scholar 

  8. 8.

    [8] E. J. Lavernia, B. Q. Han, and J. M. Schoenung: Mater. Sci. Eng. A, 2008, vol. 493, pp. 207–214.

    Article  Google Scholar 

  9. 9.

    [9] F. A. Mohamed: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2157–2162.

    Article  Google Scholar 

  10. 10.

    D. B. Witkin and E. J. Lavernia: Prog. Mater. Sci., 2006, vol. 51, pp. 1–60.

    CAS  Article  Google Scholar 

  11. 11.

    [11] F. A. Mohamed and Y. Xun: 2003, Mater. Sci. Eng. A, vol. 354, pp. 133–139.

    Article  Google Scholar 

  12. 12.

    [12] N. Yang, J. K. Yee, Z. Zhang, L. Kurmanaeva, P. Cappillino, V. Stavila, E. J. Lavernia, and C. San Marchi: Acta Mater., 2015, vol. 82, pp. 41–50.

    CAS  Article  Google Scholar 

  13. 13.

    [13] J. H. Lee: Appl. Mech. Mater., 2011, vol. 87, pp. 243–248.

    CAS  Article  Google Scholar 

  14. 14.

    [14] Z. Zhang and D. Chen: Scr. Mater., 2006, vol. 54, no. 7, pp. 1321–1326.

    CAS  Article  Google Scholar 

  15. 15.

    [15] S. Noh, B. Choi, S. Kang, and T. Kim: Nuclear Engineering and Technology, 2014, vol. 46, pp. 857-862.

    Article  Google Scholar 

  16. 16.

    [16] K. Lu, L. Lu, and S. Suresh: Science, 2009, vol. 324, pp. 349–352.

    CAS  Article  Google Scholar 

  17. 17.

    [17] E. Arzt: Acta Mater., 1998, vol. 46, pp. 5611–5626.

    CAS  Article  Google Scholar 

  18. 18.

    [18] R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer, N. Hashimoto, E. A. Kenik, and K. Miyahara: J. Nucl. Mater., 2002, vol. 307–311, pp. 773–777.

    Article  Google Scholar 

  19. 19.

    [19] R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, and D. T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp. 103–114.

    CAS  Article  Google Scholar 

  20. 20.

    R. K. Desu, H. Nitin-Krishnamurthy, A. Balu, A. K. Gupta, and S. K. Singh: J. Mater. Res. Technol., 2015, vol. 5, pp. 1–8.

    Google Scholar 

  21. 21.

    [21] Y. Hedberg, M. Norell, P. Linhardt, H. Bergqvist, and I. Odnevall Wallinder: Int. J. Electrochem. Sci., 2012, vol. 7, pp. 11655–11677.

    CAS  Google Scholar 

  22. 22.

    [22] S. W. Nam: Mater. Sci. Eng. A, 2002, vol. 322, pp. 64–72.

    Article  Google Scholar 

  23. 23.

    [23] C. Garion, B. Skoczeń, and S. Sgobba: Int. J. Plast., 2006, vol. 22, pp. 1234–1264.

    CAS  Article  Google Scholar 

  24. 24.

    B. O. Han, E. J. Lavernia, Z. Lee, S. Nutt, and D. Witkin: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 957–965.

    CAS  Article  Google Scholar 

  25. 25.

    [25] H. Yang, E. J. Lavernia, and J. M. Schoenung: Philos. Mag. Lett., 2015, vol. 95, pp. 177–186.

    CAS  Article  Google Scholar 

  26. 26.

    [26] Y. Lin, B. Yao, Z. Zhang, Y. Li, Y. Sohn, J. M. Schoenung, and E. J. Lavernia: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4247–4257.

    Article  Google Scholar 

  27. 27.

    T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173.

    Article  Google Scholar 

  28. 28.

    [28] C. Goujon, P. Goeuriot, P. Delcroix, and G. Le Caër: J. Alloys Compd., 2001, vol. 315, pp. 276–283.

    CAS  Article  Google Scholar 

  29. 29.

    [29] C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    CAS  Article  Google Scholar 

  30. 30.

    [30] H.-J. Fecht: Nanostructured Mater., 1995, vol. 6, pp. 33–42.

    CAS  Article  Google Scholar 

  31. 31.

    [31] F. A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107–4119.

    CAS  Article  Google Scholar 

  32. 32.

    [32] L. Hsiung, M. Fluss, S. Tumey, J. Kuntz, B. El-Dasher, M. Wall, B. Choi, A. Kimura, F. Willaime, and Y. Serruys: J. Nucl. Mater., 2011, vol. 409, pp. 72–79.

    CAS  Article  Google Scholar 

  33. 33.

    [33] J. T. Busby, M. C. Hash, and G. S. Was: J. Nucl. Mater., 2005, vol. 336, pp. 267–278.

    CAS  Article  Google Scholar 

  34. 34.

    AKSteel: Stainless Steel 316/316L Product Data Bulletin, 2013, pp. 2–4.

  35. 35.

    [35] S. Ahmed and F. R. Jones: J. Mater. Sci., 1990, vol. 25, pp. 4933–4942.

    CAS  Article  Google Scholar 

  36. 36.

    [36] B. Avitzur: J. Eng. Ind., 1973, vol. 95, pp. 827-834.

    Article  Google Scholar 

Download references

Acknowledgments

This research project was supported by the Hoeganaes Corporation and the Materials Design Institute, funded by the LANL/UC Davis Education Research Collaboration, Los Alamos National Laboratory (LANS Subcontract No. 75 782-001-09).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enrique Lavernia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 28, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Kurmanaeva, L., Schade, C. et al. Microstructure and Mechanical Behavior of ODS Stainless Steel Fabricated Using Cryomilling. Metall Mater Trans A 50, 5767–5781 (2019). https://doi.org/10.1007/s11661-019-05479-4

Download citation