Abstract
Oxide-dispersion-strengthened (ODS) stainless steels have been developed as structural materials for applications at elevated temperatures. In this study, water-atomized 316L stainless steel powder was cryomilled with various types of nanosized-oxide reinforcements. Conventional sintering and field-assisted sintering techniques (FAST) were used to consolidate the cryomilled powder. Mechanical properties, both in tension and compression, were evaluated for consolidated samples: samples made of cryomilled powders, as well as samples made of a mixture of cryomilled and coarse-grained atomized powders. The bimodal structure that evolved from such mixtures effectively toughened the ultrastrong cryomilled material. Microstructural analysis was carried out to determine the efficacy of the cryomilled powder. Results from the cryomilling experiments showed that a minimum grain size could be reached within 12 hours of milling. Our results showed that dispersion of the oxide phases during cryomilling occurred exclusively through physical mechanisms, which was different from that previously reported for room-temperature ball milling. The spatial distribution of the oxide dispersoids was found to be dependent on the evolution of internal surfaces during milling and on the type of oxide particle used. Finally, the influence of reinforcement on the mechanical behavior of the cryomilled material was analyzed using oxide-dispersion-strengthening and load-transfer-based strengthening mechanisms.
This is a preview of subscription content, access via your institution.









References
- 1.
[1] C. C. Chan: Proc. IEEE, 2007, vol. 95, pp. 704–718.
- 2.
[2] M. S. El-Genk and J.-M. Tournier: J. Nucl. Mater., 2005, vol. 340, pp. 93–112.
- 3.
[3] S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, and S. Ohnuki: Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 115–120.
- 4.
[4] T. Okuda and M. Fujiwara: J. Mater. Sci. Lett., 1995 vol. 14, pp. 1600–1603.
- 5.
[5] C. Hin and B. D. Wirth: J. Nucl. Mater., 2010, vol. 402, pp. 30–37.
- 6.
[6] J. R. Rieken, I. E. Anderson, M. J. Kramer, G. R. Odette, E. Stergar, and E. Haney: J. Nucl. Mater., 2012, vol. 428, pp. 65–75.
- 7.
[7] Y. Chen, K. Sridharan, T. R. Allen, and S. Ukai: J. Nucl. Mater., 2006, vol. 359, pp. 50–58.
- 8.
[8] E. J. Lavernia, B. Q. Han, and J. M. Schoenung: Mater. Sci. Eng. A, 2008, vol. 493, pp. 207–214.
- 9.
[9] F. A. Mohamed: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2157–2162.
- 10.
D. B. Witkin and E. J. Lavernia: Prog. Mater. Sci., 2006, vol. 51, pp. 1–60.
- 11.
[11] F. A. Mohamed and Y. Xun: 2003, Mater. Sci. Eng. A, vol. 354, pp. 133–139.
- 12.
[12] N. Yang, J. K. Yee, Z. Zhang, L. Kurmanaeva, P. Cappillino, V. Stavila, E. J. Lavernia, and C. San Marchi: Acta Mater., 2015, vol. 82, pp. 41–50.
- 13.
[13] J. H. Lee: Appl. Mech. Mater., 2011, vol. 87, pp. 243–248.
- 14.
[14] Z. Zhang and D. Chen: Scr. Mater., 2006, vol. 54, no. 7, pp. 1321–1326.
- 15.
[15] S. Noh, B. Choi, S. Kang, and T. Kim: Nuclear Engineering and Technology, 2014, vol. 46, pp. 857-862.
- 16.
[16] K. Lu, L. Lu, and S. Suresh: Science, 2009, vol. 324, pp. 349–352.
- 17.
[17] E. Arzt: Acta Mater., 1998, vol. 46, pp. 5611–5626.
- 18.
[18] R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer, N. Hashimoto, E. A. Kenik, and K. Miyahara: J. Nucl. Mater., 2002, vol. 307–311, pp. 773–777.
- 19.
[19] R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, and D. T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp. 103–114.
- 20.
R. K. Desu, H. Nitin-Krishnamurthy, A. Balu, A. K. Gupta, and S. K. Singh: J. Mater. Res. Technol., 2015, vol. 5, pp. 1–8.
- 21.
[21] Y. Hedberg, M. Norell, P. Linhardt, H. Bergqvist, and I. Odnevall Wallinder: Int. J. Electrochem. Sci., 2012, vol. 7, pp. 11655–11677.
- 22.
[22] S. W. Nam: Mater. Sci. Eng. A, 2002, vol. 322, pp. 64–72.
- 23.
[23] C. Garion, B. Skoczeń, and S. Sgobba: Int. J. Plast., 2006, vol. 22, pp. 1234–1264.
- 24.
B. O. Han, E. J. Lavernia, Z. Lee, S. Nutt, and D. Witkin: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 957–965.
- 25.
[25] H. Yang, E. J. Lavernia, and J. M. Schoenung: Philos. Mag. Lett., 2015, vol. 95, pp. 177–186.
- 26.
[26] Y. Lin, B. Yao, Z. Zhang, Y. Li, Y. Sohn, J. M. Schoenung, and E. J. Lavernia: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4247–4257.
- 27.
T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173.
- 28.
[28] C. Goujon, P. Goeuriot, P. Delcroix, and G. Le Caër: J. Alloys Compd., 2001, vol. 315, pp. 276–283.
- 29.
[29] C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.
- 30.
[30] H.-J. Fecht: Nanostructured Mater., 1995, vol. 6, pp. 33–42.
- 31.
[31] F. A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107–4119.
- 32.
[32] L. Hsiung, M. Fluss, S. Tumey, J. Kuntz, B. El-Dasher, M. Wall, B. Choi, A. Kimura, F. Willaime, and Y. Serruys: J. Nucl. Mater., 2011, vol. 409, pp. 72–79.
- 33.
[33] J. T. Busby, M. C. Hash, and G. S. Was: J. Nucl. Mater., 2005, vol. 336, pp. 267–278.
- 34.
AKSteel: Stainless Steel 316/316L Product Data Bulletin, 2013, pp. 2–4.
- 35.
[35] S. Ahmed and F. R. Jones: J. Mater. Sci., 1990, vol. 25, pp. 4933–4942.
- 36.
[36] B. Avitzur: J. Eng. Ind., 1973, vol. 95, pp. 827-834.
Acknowledgments
This research project was supported by the Hoeganaes Corporation and the Materials Design Institute, funded by the LANL/UC Davis Education Research Collaboration, Los Alamos National Laboratory (LANS Subcontract No. 75 782-001-09).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted March 28, 2017.
Rights and permissions
About this article
Cite this article
Dai, C., Kurmanaeva, L., Schade, C. et al. Microstructure and Mechanical Behavior of ODS Stainless Steel Fabricated Using Cryomilling. Metall Mater Trans A 50, 5767–5781 (2019). https://doi.org/10.1007/s11661-019-05479-4
Received:
Published:
Issue Date: