A Novel Multi-frequency Nonlinear Ultrasonic Approach for the Characterization of Annealed Polycrystalline Microstructure

Abstract

A multi-frequency nonlinear ultrasonic measurement is used to characterize grain size variations and distributions unambiguously. The ultrasonic nonlinearity parameter varies linearly with grain size in the Rayleigh scattering regime but deviates from linear behavior at the Rayleigh-to-stochastic transition zone. Frequency dependence of this parameter is found to be a reliable tool for rapid screening of materials where grain size varies widely.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    X. Yuan, L. Chen, Y. Zhao, H. Di, and F. Zhu: Procedia Eng., 2014, vol. 81, pp. 143–8.

    CAS  Article  Google Scholar 

  2. 2.

    Z. Keran, M. Mihaljević, B. Runje, and D. Markučič: Arch. Civ. Mech. Eng., 2017, vol. 17, pp. 375–81.

    Article  Google Scholar 

  3. 3.

    M. Vasudevan and P. Palanichamy: J. Mater. Eng. Perform., 2002, vol. 11, pp. 169–79.

    CAS  Article  Google Scholar 

  4. 4.

    P. Palanichamy, A. Joseph, T. Jayakumar, and B. Raj: NDT E Int., 1995, vol. 28, pp. 179–85.

    CAS  Article  Google Scholar 

  5. 5.

    H. Du and J.A. Turner: Ultrasonics, 2014, vol. 54, pp. 882–7.

    CAS  Article  Google Scholar 

  6. 6.

    T. Wan, T. Naoe, T. Wakui, M. Futakawa, H. Obayashi, and T. Sasa: Materials (Basel)., 2017, vol. 10, 753.

    Article  Google Scholar 

  7. 7.

    X. Li, X. Han, A.P. Arguelles, Y. Song, and H. Hu: Ultrasonics, 2017, vol. 78, pp. 23–9.

    CAS  Article  Google Scholar 

  8. 8.

    A. Kumar, K. Laha, T. Jayakumar, K.B.S. Rao, and B. Raj: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1617–26.

    CAS  Article  Google Scholar 

  9. 9.

    L. Yang, O.I. Lobkis, and S.I. Rokhlin: Ultrasonics, 2011, vol. 51, pp. 697–708.

    CAS  Article  Google Scholar 

  10. 10.

    E.P. Papadakis: J. Acoust. Soc. Am., 1965, vol. 37, p. 711–7.

    CAS  Article  Google Scholar 

  11. 11.

    F. Dong, X. Wang, Q. Yang, H. Liu, D. Xu, Y. Sun, Y. Zhang, R. Xue, and S. Krishnaswamy: Scr. Mater., 2018, vol. 154, pp. 40–4.

    CAS  Article  Google Scholar 

  12. 12.

    P.B. Nagy: Ultrasonics, 1998, vol. 36, pp. 375–81.

    Article  Google Scholar 

  13. 13.

    L. Bjørnø: Ultrasonics, 2002, vol. 40, pp. 11–7.

    Article  Google Scholar 

  14. 14.

    K.H. Matlack, J.-Y. Kim, L.J. Jacobs, and J. Qu: J. Nondestruct. Eval., 2015, vol. 34, 273.

    Article  Google Scholar 

  15. 15.

    W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, pp. 275–89.

    CAS  Article  Google Scholar 

  16. 16.

    A. Hikata and C. Elbaum: Phys. Rev., 1966, vol. 144, pp. 469–77.

    CAS  Article  Google Scholar 

  17. 17.

    X. Gao and J. Qu: J. Appl. Phys., 2018, vol. 124, 125102.

    Article  Google Scholar 

  18. 18.

    A. Hikata, B.B. Chick, and C. Elbaum: Appl. Phys. Lett., 1963, vol. 3, pp. 195–7.

    Article  Google Scholar 

  19. 19.

    W.D. Cash and W. Cai: J. Appl. Phys., 2012, vol. 111, 074906.

    Article  Google Scholar 

  20. 20.

    S.T. Abraham, S.K. Albert, C.R. Das, N. Parvathavarthini, B. Venkatraman, R.S. Mini, and K. Balasubramaniam: Acta Metall. Sin. English Lett., 2013, vol. 26, pp. 545–52.

    CAS  Article  Google Scholar 

  21. 21.

    R.S. Mini, K. Balasubramaniam, and P. Ravindran: Exp. Mech., 2015, vol. 55, pp. 1023–30.

    Article  Google Scholar 

  22. 22.

    E.P. Papadakis: J. Appl. Phys., 1963, vol. 34, pp. 265–9.

    CAS  Article  Google Scholar 

  23. 23.

    H. Jeong, D. Barnard, S. Cho, S. Zhang, and X. Li: Ultrasonics, 2017, vol. 81, pp. 147–57.

    Article  Google Scholar 

  24. 24.

    W. Li, B. Chen, X. Qing, Y. Cho, W. Li, B. Chen, X. Qing, and Y. Cho: Metals (Basel)., 2019, vol. 9, 271.

    Article  Google Scholar 

  25. 25.

    S. Zhang, H. Jeong, S. Cho, and X. Li: AIP Adv., 2015, vol. 5, 077133.

    Article  Google Scholar 

  26. 26.

    C. Núñez and S. Domingo: Metall. Trans. A, 1988, vol. 19, pp. 2937–44.

    Article  Google Scholar 

  27. 27.

    Kundu: Ultrasonic Nondestructive Evaluation : Engineering and Biological Material Characterization. CRC Press, Boca Raton, 2004.

    Google Scholar 

  28. 28.

    E.P. Papadakis: J. Acoust. Soc. Am., 1964, vol. 36, p. 1019.

    Article  Google Scholar 

  29. 29.

    E.P. Papadakis: Int. Met. Rev., 1984, vol. 29, pp. 1–24.

    CAS  Article  Google Scholar 

  30. 30.

    F.E. Stanke and G.S. Kino: J. Acoust. Soc. Am., 1984, vol. 75, p. 665–81.

    CAS  Article  Google Scholar 

  31. 31.

    F. Zeng, S.R. Agnew, B. Raeisinia, and G.R. Myneni: J. Nondestruct. Eval., 2010, vol. 29, pp. 93–103.

    Article  Google Scholar 

  32. 32.

    X. Bai, Y. Zhao, J. Ma, Y. Liu, and Q. Wang: Materials (Basel)., 2018, vol. 12, 102.

    Article  Google Scholar 

  33. 33.

    A.P. Arguelles and J.A. Turner: J. Acoust. Soc. Am., 2017, vol. 141, pp. 4347–53.

    Article  Google Scholar 

  34. 34.

    E.P. Papadakis: J. Appl. Phys., 1964, vol. 35, pp. 1586–94.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saju T. Abraham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 25, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abraham, S.T., Shivaprasad, S., Sreevidya, N. et al. A Novel Multi-frequency Nonlinear Ultrasonic Approach for the Characterization of Annealed Polycrystalline Microstructure. Metall Mater Trans A 50, 5567–5573 (2019). https://doi.org/10.1007/s11661-019-05478-5

Download citation