Effects of Hot Spinning and Heat Treatment on the Microstructure, Texture, and Mechanical Properties of A356 Wheel Hubs

Abstract

The effects of hot spinning and heat treatment on the microstructure, texture, and mechanical properties of A356 wheel hubs were studied. The results of the microstructure investigation show that the as-cast microstructure was broken and elongated after spinning, but the microstructure in the inner layer was not substantially streamlined. The results obtained for the eutectic Si particles reveal that they were partially cracked under the action of the spinning stress, resulting in a slight decrease in size. The spheroidization effect of heat treatment on the eutectic Si particles was significant. The results of texture research show that the original as-cast texture disappeared after spinning, and the subsequent heat treatment had an influence on the texture transformation. The distribution of the misorientation angle changed after hot spinning and heat treatment. The hardness results show that the hardness decreased slightly by spinning but increased with the subsequent heat treatment. Both spinning and heat treatment could improve the tensile strength, but the tensile strength of the inner layer was lower than that of the outer layer. The effect of the developed textures on the yield strength was explored by a comparison study using the Schmid Factor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    1.W. M. Jiang, Z. T. Fan, D. J. Liu, D. F. Liao, X. P. Dong and X. M. Zong: Mater. Sci. Eng. A, 2013, vol. 560, pp. 396-403.

    CAS  Article  Google Scholar 

  2. 2.

    2.B. Milkereit, H. Frock, C. Schick and O. Kessler: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 2025-2033.

    CAS  Article  Google Scholar 

  3. 3.

    3.Y. J. Zhang, N. H. Ma, Y. K. Le, S. C. Li and H. W. Wang: Mater. Lett., 2005, vol. 59, pp. 2174-2177.

    CAS  Article  Google Scholar 

  4. 4.

    4.S.C. Wang, C. Cai, K.H. Zheng, W.J. Qi: China Foundry, 2013, vol. 10, pp: 299-303.

    CAS  Google Scholar 

  5. 5.

    5.M. J. Roy and D. M. Maijer: J. Mater. Process. Technol., 2015, vol. 226, pp. 188-204.

    CAS  Article  Google Scholar 

  6. 6.

    6.X. Y. Wu, H. R. Zhang, H. L. Chen, L. N. Jia and H. Zhang: China Foundry, 2017, vol. 14, pp. 138-44.

    Article  Google Scholar 

  7. 7.

    7.Y. C. Cheng, C. K. Lin, A. H. Tan, S. Y. Hsu and S. L. Lee: J. Mater. Eng. Perform., 2012, vol. 21, pp. 1873-78.

    CAS  Article  Google Scholar 

  8. 8.

    8.W. M. Zhao, X. F. Jia, Z. F. Wang, Z. G. Yin and G. Y. Xiong: Adv. Mater. Res., 2011,Vols. 189-193, pp. 4014-17.

    Article  Google Scholar 

  9. 9.

    9.Y. C. Cheng, C. K. Lin, A. H. Tan, J. C. Lin and S. L. Lee: Mater. Manuf. Process., 2010, vol. 25, pp. 689-95.

    Article  Google Scholar 

  10. 10.

    10.B. Dang, Y. B. Li, F. Liu, Q. Zuo and M. C. Liu: Mater. Des., 2014, vol. 57, pp. 73-78.

    CAS  Article  Google Scholar 

  11. 11.

    11.R. Gupta, A. Sharma, U. Pandel and L. Ratke: Int. J. Cast. Metals Res., 2017, vol. 30, pp. 283-92.

    CAS  Article  Google Scholar 

  12. 12.

    12.M. Zhu, Z. Y. Jian, G. C. Yang and Y. H. Zhou, Mater. Des., 2012, vol. 36, pp. 243-49.

    CAS  Article  Google Scholar 

  13. 13.

    13.V. H. Carneiro, H. Puga and J. Meireles: Mater. Sci. Eng. A, 2018, vol. 729, pp. 1-8.

    CAS  Article  Google Scholar 

  14. 14.

    14.J. H. Peng, X. L. Tang, J. T. He and D. Y. Xu: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1950-56.

    CAS  Article  Google Scholar 

  15. 15.

    15.M. Howeyze, A. R. Eivani, H. Arabi and H. R. Jafarian: Mater. Sci. Eng. A, 2018, vol. 732, pp. 120-28.

    CAS  Article  Google Scholar 

  16. 16.

    Tajir, A., Y. Uematsu, T. Kakiuchi, Y. Tozaki, Y. Suzuki and A. Afrinaldi: Int. J. Fatigue, 2015, vol. 80, pp. 192-202.

    Article  Google Scholar 

  17. 17.

    17.S. S Zhao, X. P. Lin, Y. Dong, Y. Niu, D. Xu and H. Sun: Mater. Sci. Eng. A, 2018, vol. 729, pp. 300-09.

    CAS  Article  Google Scholar 

  18. 18.

    18.K. Abib, J. A. M. Balanos, B. Alili and D. Bradai: Mater. Charact., 2016, vol. 112, pp. 252-58.

    CAS  Article  Google Scholar 

  19. 19.

    19.D. B. Shan, G. P. Yang and W. C. Xu: J. Mater. Process. Technol., 2009, vol. 209, pp. 5713-19.

    CAS  Article  Google Scholar 

  20. 20.

    20.M. G. Mueller, M. Fornabaio, G. Zagar and A. Mortensen: Acta Mater., 2016, vol. 105, pp. 165-75.

    CAS  Article  Google Scholar 

  21. 21.

    21.U. Patakham and C. Limmaneevichitr: J. Alloys Compd., 2014, vol. 616, pp. 198-207.

    CAS  Article  Google Scholar 

  22. 22.

    22.L. Yang, Y. B. Li, B. Dang, H. B. Lu and F. Liu: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 3189-96.

    CAS  Article  Google Scholar 

  23. 23.

    23.E. Ogris, A. Wahlen, H. Luchinger and P. J. Uggowitzer: J. Light Met., 2002, vol. 2, pp. 263-269.

    Article  Google Scholar 

  24. 24.

    24.Y. Birol: Mater. Sci. Eng. A., 2013, vol. 559, pp. 394-400.

    CAS  Article  Google Scholar 

  25. 25.

    25.M. S. Bhaskar and M. K. Surappa: Trans. Indian Inst. Met., 2019, vol. 72, pp. 849-57.

    CAS  Article  Google Scholar 

  26. 26.

    26.W. C. Liu, C. S. Man, D. Raabe and J. G. Morris: Scr. Mater., 2005, vol. 53, pp. 1273-77.

    CAS  Article  Google Scholar 

  27. 27.

    27.Y. C. Lin, X. Y. Wu, X. M. Chen, J. Chen, D. X. Wen, J. L. Zhang and L. T. Li: J. Alloys Compd., 2015, vol. 640, pp. 101-13.

    CAS  Article  Google Scholar 

  28. 28.

    28.Y. Birol: J. Alloys Compd., 2009, vol. 484, pp. 164-67.

    CAS  Article  Google Scholar 

  29. 29.

    29.J. B. Yu, Z. M. Ren, W. L. Ren, K. Deng and Y. B. Zhong: Acta Metall. Sin.-Engl. Lett., 2009, vol. 22, pp. 191-96.

    CAS  Article  Google Scholar 

  30. 30.

    30.G. Sha, H. Moller, W. E. Stumpf, J. H. Xia, G. Govender and S. P. Ringer: Acta Mater., 2012, vol. 60, pp. 692-701.

    CAS  Article  Google Scholar 

  31. 31.

    31.K. Buchanan, K. Colas, J. Ribis, A. Lopea, J. Garnier: Acta Mater., 2017, vol. 132, pp. 209-21.

    CAS  Article  Google Scholar 

  32. 32.

    32.Y. B. Chun, S. H. Ahn, D. H. Shin and S. K. Hwang: Mater. Sci. Eng. A., 2009, vol. 508, pp. 253-58.

    Article  Google Scholar 

  33. 33.

    33.P. Luo, D. T. McDonald, S. M. Zhu, S. Palanisamy, M. S. Dargusch and K. Xia: Mater. Sci. Eng. A., 2012, vol. 538, pp. 252-58.

    CAS  Article  Google Scholar 

  34. 34.

    34.O. R. Myhr, O. S. Hopperstad and T. Borvik: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3592-3609.

    Article  Google Scholar 

  35. 35.

    35.S. Birosca, F. Di Gioacchino, S. Stekovic and M. Hardy: Acta Mater., 2014, vol. 74, pp. 110-24.

    CAS  Article  Google Scholar 

  36. 36.

    36.S. M. Fatemi, A. Zarei-Hanzaki and J. M. Cabrera: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2563-73.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate financial support from the Natural Science Foundation of China under Grant 51275533, the State Key Laboratory of High-Performance Complex Manufacturing (Contract No. zzyjkt2013-10B), Central South University, China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Changqing Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 13, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Liu, J. Effects of Hot Spinning and Heat Treatment on the Microstructure, Texture, and Mechanical Properties of A356 Wheel Hubs. Metall Mater Trans A 51, 289–298 (2020). https://doi.org/10.1007/s11661-019-05476-7

Download citation