Effect of Thickness on the Thermal Conductivity and Microstructure of Die-Cast AZ91D Magnesium Alloy


Magnesium alloys have many excellent properties and possess wide industrial application prospects. Sheets of AZ91D magnesium alloy with different thicknesses were produced by the die-cast process, and the cooling rates lay between 3.77 and 29.27 °C s−1 with the thickness ranging from 1.5 to 6 mm. With the increasing thickness, the grain size increased, and the concentration of Al solute atoms in Mg matrix decreased. The second phases transformed from homogeneous fine particles and short strips at 1.5 mm to a network at 6 mm. These changes can be attributed to the cooling rate. The thermal conductivity was found to increase with the increasing thickness at the same temperature, and to increase with the increasing temperature at the same thickness. The minimum thermal conductivity (45.19 W (m K)−1), and the maximum thermal conductivity (89.32 W (m K)−1) were obtained at a thickness of 1.5 mm at 25 °C and a thickness of 6 mm at 150 °C, respectively. The grain size increased, and the Al solute atoms in Mg matrix decreased with the increasing thickness, which reduced the lattice irregularity and scattering of electrons and phonons, and resulted in an increase in the thermal conductivity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    M.M. Avedesian and H. Baker: ASM Specialty Handbook: Magnesium and Magnesium alloys. ASM international. Materials Park, 1999.

    Google Scholar 

  2. 2.

    X. Tong, G. Q. You, Y. H. Ding, H. S. Xue, Y. C. Wang, and W. Guo: Mater. Lett., 2018, vol. 229, 261-264.

    CAS  Article  Google Scholar 

  3. 3.

    L. P. Zhong, J. Peng, S. Sun, Y. J. Wang, Y. Lu, and F. S. Pan: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1240–1248.

    Article  Google Scholar 

  4. 4.

    M. K. Kulekci: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 851-865.

    Article  Google Scholar 

  5. 5.

    C. Y. Su, D. J. Li, A. A. Luo, R. H. Shi, and X. Q. Zeng: Metall. Mater. Trans. A.,2019, vol.50, pp 1970–1984.

    Article  Google Scholar 

  6. 6.

    T. Ying, M.Y. Zheng, Z.T. Li, X.G. Qiao, and S.W. Xu: J. Alloys Compd., 2015, vol. 621, pp. 250-255.

    CAS  Article  Google Scholar 

  7. 7.

    C. Y. Su, D. J. Li, T. Ying, L. P. Zhou, L. Li, and X. Q. Zeng: J. Alloys Compd., 2016, vol. 685, pp. 114-121.

    CAS  Article  Google Scholar 

  8. 8.

    J. Peng, L. P. Zhong, Y. J. Wang, Y. Lu, and F. S. Pan: Mater. Des., 2015, vol. 87, pp. 914-919.

    CAS  Article  Google Scholar 

  9. 9.

    K.C. Mills: Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, Cambridge, 2002, p. 143.

    Google Scholar 

  10. 10.

    Y. S. Touloukian, R. W. Powell, C.Y. Ho, and P. G. Klemens: Thermophysical properties of matter: Thermal conductivity; metallic elements and alloys. Plenum, New York, 1970, pp. 658–660.

    Google Scholar 

  11. 11.

    G. Q. You, Y. Ming, P. Yan, X. L. Ma, and B. H. Tong: Rare Metal Mat. Eng., 2018, vol. 47, pp. 2393-2403.

    Google Scholar 

  12. 12.

    Z. Q. Cui and Y. C. Tan: Metallurgy and Heat Treatment, 2nd ed. Harbin: Harbin Institute of Technology Press, 2012, pp. 39.

    Google Scholar 

  13. 13.

    R. Berman: Thermal Conduction in Solids. Oxford: Clarendon Press, 1976.

    Google Scholar 

  14. 14.

    J. W. Yuan, K. Zhang, X. H. Zhang, X. G. Li, T. Li, Y. J. Li, M. L. Ma, and G. L. Shi: J. Alloys Compd., 2013, vol. 47, pp. 32-36.

    Article  Google Scholar 

  15. 15.

    T. Ying, H. Chi, M. Y. Zheng, Z. T. Li, and C. Uher: Acta Mater. 2014, vol. 80, pp. 288-295.

    CAS  Article  Google Scholar 

  16. 16.

    U.F. Kocks: Metall. Trans. A, 1985, vol. 16, PP. 2109–2129.

    Article  Google Scholar 

  17. 17.

    A. R. Eivani, H. Ahmed, J. Zhou, and J. Duszczyk: Metall. Mater. Trans. A., 2009, vol. 40, pp. 2435-2446.

    CAS  Article  Google Scholar 

  18. 18.

    C. Y. Su, D. J. Li, A. A. Luo, T. Ying, and X. Q. Zeng: J. Alloys Compd., 2018, vol. 747, pp. 431-437.

    CAS  Article  Google Scholar 

  19. 19.

    P. Sharifi, Y. Fan, H. B. Anaraki, A. Banerjee, K. Sadayappan, and J. T. Wood: Metall. Mater. Trans. A.. 2016, vol. 47, pp 5159–5168.

    Article  Google Scholar 

Download references


This research is supported by the key project of the National Key Research and Development Program of China (No. 2016YFB0301100) and the Entrepreneurship & Innovation Program for Chongqing Overseas Returned Scholars (No. CX2017075).

Author information



Corresponding author

Correspondence to Guoqiang You.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 15, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ming, Y., You, G., Xu, X. et al. Effect of Thickness on the Thermal Conductivity and Microstructure of Die-Cast AZ91D Magnesium Alloy. Metall Mater Trans A 50, 5969–5976 (2019). https://doi.org/10.1007/s11661-019-05473-w

Download citation