Effects of Gd, Y, and La Rare-Earth Elements on the Microstructural Stability and Elevated-Temperature Mechanical Properties of AZ81 Magnesium Alloy


The effects of separate additions of 1 wt pct Gd, Y, and La rare-earth (RE) elements on the microstructural stability and strength of a cast AZ81 alloy were investigated in the as-cast and annealed conditions. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and optical microscopy (OM) analyses along with shear punch testing (SPT) were employed to characterize the microstructural stability and mechanical properties of the studied alloys. The main microstructural constituent in the AZ81 base alloy, Mg17Al12 intermetallic phase, showed a relatively low thermal stability, resulting in a significant strength decline at high temperatures. The incorporation of the RE elements into the base alloy not only refined the microstructure but also improved the thermal stability and high-temperature mechanical properties of the RE-containing alloys. The observed enhancement in both stability and shear strength was attributed to the reduction in the volume fraction of β-Mg17Al12 and formation of the thermally stable Al2Gd, Al2Y, and Al11La3 intermetallic particles, which suppress the grain growth throughout the annealing process. Among the employed RE elements, La was found to be the most effective one in the retention of the initial fine microstructure as well as ultimate shear strength after long-term annealing at 400 °C. This is believed to be caused by the higher number density and more uniform dispersion of the Al11La3 particles in the Mg matrix in comparison with the Al2Gd and Al2Y particles, which showed a more sparse distribution of some agglomerated particles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    MAGREX 36 is a trademark of Foseco, Staffordshire, United Kingdom.


  1. 1.

    I.J. Polmear: Light alloys, 2nd ed., Chapman and Hall, Inc., New York, NY, 1989. pp. 170-88.

    Google Scholar 

  2. 2.

    Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, and J. Robson: Acta Metall. Sinica, 2008, vol. 21, pp. 313-28.

    CAS  Article  Google Scholar 

  3. 3.

    K.U. Kainer: Magnesium Alloys and Technology, Wiley-VCH, Weinheim, 2003, pp. 1-23.

    Google Scholar 

  4. 4.

    A. Luo and M.O. Pekguleryuz: J. Mater. Sci., 1994, vol. 29, pp. 5259-71.

    CAS  Article  Google Scholar 

  5. 5.

    E. Aghion, B. Bronfin, F. Von Buch, S. Shumann, and H. Friedrich: JOM, 2003, vol. 55, pp. 30-33.

    CAS  Article  Google Scholar 

  6. 6.

    R. Alizadeh and R. Mahmudi: Mater. Sci. Eng., 2010, vol. 527A, pp. 5312-17.

    Article  Google Scholar 

  7. 7.

    G. Nayyeri and R. Mahmudi: Mater. Des., 2011, vol. 32, pp. 1571-76.

    CAS  Article  Google Scholar 

  8. 8.

    H.K. Lim, S.W. Sohn, D.H. Kim, J.Y. Lee, W.T. Kim, and D.H. Kim: J. Alloys Compd., 2008, vol. 454, pp. 515-22.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Chen, L. Jin, D. Fang, Y. Song, and R. Ye: J. Rare Earths, 2015, vol. 33, pp. 86-92.

    CAS  Article  Google Scholar 

  10. 10.

    B. Kondori and R. Mahmudi: Mater. Sci. Eng., 2010, vol. 527A, pp. 2014-21.

    Article  Google Scholar 

  11. 11.

    F. Kabirian and R. Mahmudi: Adv. Eng. Mater., 2009, vol. 11, pp. 189-93.

    CAS  Article  Google Scholar 

  12. 12.

    R. Alizadeh, R. Mahmudi, A.H.W. Ngan, P.H.R. Pereira, Y. Huang, and T.G. Langdon: Metall. Mater. Trans. A, 2016, vol. 47, pp. 6056-65.

    Article  Google Scholar 

  13. 13.

    N. Tork, S.H. Razavi, H. Saghafian, and R. Mahmudi: Adv. Eng. Mater., 2016, 18, 156-61.

    CAS  Article  Google Scholar 

  14. 14.

    X. Wang, W. Du, K. Liu, Z. Wang, and S. Li: J. Alloys compd., 2012, vol. 522, pp. 78-84.

    CAS  Article  Google Scholar 

  15. 15.

    K.J. Li: Adv. Mater. Res., 2013, vol. 821, pp. 860-63.

    Article  Google Scholar 

  16. 16.

    R. Alizadeh, R. Mahmudi A.H.W. Ngan, T.G. Langdon: J. Mater. Sci. 2015, 50, 4940–51.

    CAS  Article  Google Scholar 

  17. 17.

    Y. Ali, D. Qiu, B. Jiang, F. Pan, and M.X. Zhang: J. Alloys Compd., 2015, vol. 619, pp. 639-51.

    CAS  Article  Google Scholar 

  18. 18.

    N. Jiang, L. Chen, L. Meng, C. Fang, H. Hao, and X. Zhang: J. Rare Earths, 2016, vol. 34, pp. 632-37.

    CAS  Article  Google Scholar 

  19. 19.

    M.F. Wang, D.H. Xiao, P.F. Zhou, W.S. Liu, Y.Z. Ma, and B.R. Sun: J. Alloys Compd., 2018, vol. 742, pp. 232-39.

    CAS  Article  Google Scholar 

  20. 20.

    J. Zhang, X. Niu, X. Qiu, K. Liu, Ch. Nan, D. Tang, and J. Meng: J. Alloys Compd., 2009, vol. 471, pp. 322-30.

    CAS  Article  Google Scholar 

  21. 21.

    E. Aghion, Y. Gueta, N. Moscovitcha, and B. Bronfin: J. Mater. Sci., 2008, vol. 43, pp. 4870-75.

    CAS  Article  Google Scholar 

  22. 22.

    Z. Zhao, Q. Chen, Y. Wang, and D. Shu: Mater. Sci. Eng., 2009, vol. 515A, pp. 152-61.

    Article  Google Scholar 

  23. 23.

    A. Boby, A. Srinivasan, U.T.S. Pillai, and B.C. Pai: Mater. Des., 2015, vol. 88, pp. 871-79.

    CAS  Article  Google Scholar 

  24. 24.

    M. Wang, H. Zhou, and L. Wang: J. Rare Earths, 2007, vol. 25, pp. 233-37.

    Article  Google Scholar 

  25. 25.

    N. Kashefi and R. Mahmudi: Mater. Des., 2012, vol. 39, pp. 200-10.

    CAS  Article  Google Scholar 

  26. 26.

    G. Wu, Y. Fan, H. Gao, C. Zhai, and Y.P. Zhu: Mater. Sci. Eng., 2005, vol. 408A, pp. 255-63.

    Article  Google Scholar 

  27. 27.

    D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min, and W. Dengyun: Mater. Sci. Eng., 2003, vol. 356A, pp. 1-7.

    Article  Google Scholar 

  28. 28.

    R. Mahmudi, F. Kabirian, and Z. Nematollahi: Mater. Des., 2011, vol. 32, pp. 2583-89.

    CAS  Article  Google Scholar 

  29. 29.

    H. Liao, S. Long, C. Guo, and Z. Zhu: Trans. Nonferrous Met. Soc. China, 2008, vol. 18, pp. 44-49.

    Article  Google Scholar 

  30. 30.

    F. Khomamizadeh, B. Nami, and S. Khoshkhooei: Metall. Mater. Trans. A, 2005, vol. 36, pp. 3489-94.

    CAS  Article  Google Scholar 

  31. 31.

    F. Kabirian and R. Mahmudi: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2190-2201.

    CAS  Article  Google Scholar 

  32. 32.

    N. Ishimatsu, Y. Terada, T. Sato, and K. Ohori: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 243-48.

    CAS  Article  Google Scholar 

  33. 33.

    S. Golmakaniyoon and R. Mahmudi: Mater. Sci. Eng., 2011, vol. 528A, pp. 1668-77.

    Article  Google Scholar 

  34. 34.

    A.L. Allred: J. Inorg. Nucl. Chem., 1961, vol. 17, pp. 215-21.

    CAS  Article  Google Scholar 

  35. 35.

    N. Balasubramani, A. Srinivasan, U.T.S. Pillai, and B.C. Pai: Mater. Sci. Eng., 2007, vol. 457A, pp. 275-81.

    Article  Google Scholar 

  36. 36.

    B.D. Cullity: Element of X-ray diffraction, Addision-Wesley, Reading, MA, 1956, p. 347.

    Google Scholar 

  37. 37.

    B. Kondori and R. Mahmudi: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2007-15.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Reza Mahmudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 10, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashrafizadeh, S.M., Mahmudi, R. Effects of Gd, Y, and La Rare-Earth Elements on the Microstructural Stability and Elevated-Temperature Mechanical Properties of AZ81 Magnesium Alloy. Metall Mater Trans A 50, 5957–5968 (2019). https://doi.org/10.1007/s11661-019-05471-y

Download citation