The Influence of Microstructural Characteristics on Austenite Formation Kinetics in a Plain Carbon Steel


Since the condition of austenite phase formed during intercritical annealing treatment has a crucial impact on the final microstructure and mechanical properties of dual-phase (DP) steels, detailed investigations with regard to austenite formation in this heat treatment process need to be done. In this study, the effects of different microstructural features, such as ferrite grain size, cementite particle size, and pearlite morphology, on austenite formation in a plain carbon steel (0.165 wt pct C, 1.15 wt pct Mn) during isothermal intercritical annealing treatment have been evaluated. The Johnson–Mehl–Avrami–Kolmogorov (JMAK) model was used for modeling the kinetics of austenite formation in this steel during isothermal annealing treatment. The volume fraction of austenite (martensite at room temperature) at different intercritical annealing holding times was calculated by this model using the corresponding results obtained from the experiments. It was found that the starting steel microstructure from which austenite phase is formed has a significant effect on both austenite nucleation and growth. The effect of microstructural parameters on the kinetics of austenite formation in ferrite-cementite steel microstructures was more significant than that in ferrite-pearlite (F-P) steels. An increase in the average cementite particle size or ferrite grain size in ferrite-cementite steels caused a significant decrease in the rate of austenite formation. In F-P steels, on the other hand, pearlite morphology exhibited a small effect on the kinetics of austenite formation while ferrite grain size had a pronounced effect on the rate of austenite formation at the later stage of intercritical annealing, i.e., ferrite to austenite transformation stage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Hamid Azizi-Alizamini, Matthias Militzer, and Warren J Poole: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1544–57.

    Article  Google Scholar 

  2. 2.

    C.I. Garcia and A.J. DeArdo: Metall. Trans. A, 1981, vol. 12A, pp. 521–30.

    CAS  Article  Google Scholar 

  3. 3.

    J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3363–75.

    CAS  Article  Google Scholar 

  4. 4.

    Martín SD, de Cock T, García-Junceda A, Caballero FG, Capdevila C, de Andrés CG (2008) Mater. Sci. Technol. 24:266–272.

    Article  Google Scholar 

  5. 5.

    Navara E, Bengtsson B, Easterling KE (1986) Mater. Sci. Technol. 2:1196–1201.

    CAS  Article  Google Scholar 

  6. 6.

    J. Rudnizki, B. Böttger, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2516–25.

    Article  Google Scholar 

  7. 7.

    G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28.

    CAS  Article  Google Scholar 

  8. 8.

    D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1985, vol. 16A, pp. 1385–92.

    Article  Google Scholar 

  9. 9.

    R.R. Mohanty, O.A. Girina, and N.M. Fonstein: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3680–90.

    Article  Google Scholar 

  10. 10.

    CastroCerda FM, Sabirov I, Goulas C, Sietsma J, Monsalve A, Petrov RH (2017) Mater. Design 116:448–60.

    CAS  Article  Google Scholar 

  11. 11.

    M. Kulakov, W.J. Poole, and M Militzer: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3564–76.

    Article  Google Scholar 

  12. 12.

    M. Enomoto, S. Li, Z.N. Yang, C. Zhang, and Z.G. Yang: Calphad, 2018, vol. 61, pp. 116–25.

    CAS  Article  Google Scholar 

  13. 13.

    Abdelahad Chbihi, David Barbier, Lionel Germain, Alain Hazotte, and Mohamed Gouné: J. Mater. Sci., 2014, vol. 49, pp. 3608–21.

    CAS  Article  Google Scholar 

  14. 14.

    Qingquan Lai, Mohamed Gouné, Astrid Perlade, Thomas Pardoen, Pascal Jacques, Olivier Bouaziz, and Yves Bréchet: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3375–86.

    Article  Google Scholar 

  15. 15.

    Judd RR, Paxton HW (1968) Trans TMS-AIME 242:206.

    CAS  Google Scholar 

  16. 16.

    Göran Molinder: Acta Metall., 1956, vol. 4, pp. 565–71.

    CAS  Article  Google Scholar 

  17. 17.

    Yi JJ, Kim IS, Choi HS (1985) Metall. Trans. A, 16A:1237–1245.

    CAS  Article  Google Scholar 

  18. 18.

    Mohsenzadeh MS, Mazinani M (2016) Mater. Sci. Eng.: A 673:193–203.

    CAS  Article  Google Scholar 

  19. 19.

    Mohsenzadeh MS, Mazinani M (2017) Mater. Sci. Eng.: A, 702:113–24.

    CAS  Article  Google Scholar 

  20. 20.

    D.A. Porter, K.E. Easterling, and M. Sherif: Phase Transformations in Metals and Alloys, 3rd ed., (Revised Reprint), CRC Press, Boca Raton, 2009.

  21. 21.

    A. Baldan: J. Mater. Sci., 2002, vol. 37, pp. 2171–2202.

    CAS  Article  Google Scholar 

  22. 22.

    V.I. Savran, Y. Van Leeuwen, D.N. Hanlon, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 946–55.

    CAS  Article  Google Scholar 

  23. 23.

    Melvin Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    CAS  Article  Google Scholar 

  24. 24.

    William A Johnson and Robert F Mehl: Trans. AIME, 1939, vol. 135, pp. 396–415.

    Google Scholar 

  25. 25.

    Kolmogorov AN (1937) Bull. Acad. Sci. USSR, Math. Ser., 1:355–59.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Mazinani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 22, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohsenzadeh, M.S., Mazinani, M. The Influence of Microstructural Characteristics on Austenite Formation Kinetics in a Plain Carbon Steel. Metall Mater Trans A 51, 116–130 (2020).

Download citation