A Formation Map of Iron-Containing Intermetallic Phases in Recycled Cast Aluminum Alloys


The cooling rate-dependent modification effect of Mn on the formation of Fe-containing intermetallic phases during solidification of Al-Si-Mg secondary cast aluminum alloys [containing 0.5 to 1 pct Fe (All compositions are in wt pct unless otherwise stated.)] was investigated by CALculation of PHAse Diagrams (CALPHAD) modeling and solidification experiments. The critical Mn concentration required to prevent the formation of detrimental β-Al5FeSi was found to be dependent on both the alloy composition (particularly the Fe/Mn ratio) and the cooling rate. A map of Fe/Mn ratio vs cooling rate was created, to summarize the metallurgical conditions of Fe-rich intermetallic phase formation. By understanding such formation conditions, the microstructure of aluminum castings can be controlled to create low-cost secondary alloys with high Fe content.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    A.I. Taub and A.A. Luo: MRS Bull., 2015, vol. 40, pp. 1045–54.

    Article  Google Scholar 

  2. 2.

    J.G. Kaufman and E.L. Rooy: Aluminium Alloy Castings: Properties, Processes, and Applications, ASM International, Cleveland 2004.

    Google Scholar 

  3. 3.

    M.E. Schlesinger: Aluminum Recycling, 2nd edn., CRC Press, Boca Raton, FL, 2013.

    Google Scholar 

  4. 4.

    W.J. Joost: JOM, 2012, vol. 64, pp. 1032–8.

    Article  Google Scholar 

  5. 5.

    G. Gaustad, E. Olivetti, and R. Kirchain: Resour. Conserv. Recycl., 2012, vol. 58, pp. 79–87.

    Article  Google Scholar 

  6. 6.

    K. Nakajima, O. Takeda, T. Miki, K. Matsubae, S. Nakamura, and T. Nagasaka: Environ. Sci. Technol., 2010, vol. 44, pp. 5594–600.

    CAS  Article  Google Scholar 

  7. 7.

    A. Couture: AFS Int. Cast Met. J., 1981, vol. 6, pp. 9–17.

    Google Scholar 

  8. 8.

    P.N. Crepeau: Trans. Am. Foundrymen’s Soc., 1995, vol. 103, pp. 361–6.

    CAS  Google Scholar 

  9. 9.

    J.A. Taylor: Procedia Mater. Sci., 2012, vol. 1, pp. 19–33.

    CAS  Article  Google Scholar 

  10. 10.

    S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller, and A.K. Dahle: Acta Mater., 2010, vol. 58, pp. 5370–80.

    CAS  Article  Google Scholar 

  11. 11.

    C.M. Dinnis, J.A. Taylor, and A.K. Dahle: Scr. Mater., 2005, vol. 53, pp. 955–8.

    CAS  Article  Google Scholar 

  12. 12.

    C. Puncreobutr, A.B. Phillion, J.L. Fife, P. Rockett, A.P. Horsfield, and P.D. Lee: Acta Mater., 2014, vol. 79, pp. 292–303.

    CAS  Article  Google Scholar 

  13. 13.

    S. Seifeddine, S. Johansson, and I.L. Svensson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 385–90.

    Article  Google Scholar 

  14. 14.

    J.Y. Hwang, H.W. Doty, and M.J. Kaufman: Mater. Sci. Eng. A, 2008, vol. 488, pp. 496–504.

    Article  Google Scholar 

  15. 15.

    D. Bösch, S. Pogatscher, M. Hummel, W. Fragner, P. Uggowitzer, M. Göken, and H. Höppel: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1035–45.

    Article  Google Scholar 

  16. 16.

    A. Gorny, J. Manickaraj, Z. Cai, and S. Shankar: J. Alloys Compd., 2013, vol. 577, pp. 103–24.

    CAS  Article  Google Scholar 

  17. 17.

    Y. Awano and Y. Shimizu: AFS Trans., 1990, vol. 98, pp. 889–95.

    CAS  Google Scholar 

  18. 18.

    M. V Kral: Mater. Lett., 2005, vol. 59, pp. 2271–6.

    CAS  Article  Google Scholar 

  19. 19.

    L.A. Narayanan, F.H. Samuel, and J.E. Gruzleski: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1761–73.

    CAS  Article  Google Scholar 

  20. 20.

    C.M. Dinnis, J.A. Taylor, and A.K. Dahle: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3283–91.

    CAS  Article  Google Scholar 

  21. 21.

    S.G. Shabestari: Mater. Sci. Eng. A, 2004, vol. 383, pp. 289–98.

    Article  Google Scholar 

  22. 22.

    K. Liu, X. Cao, and X.G. Chen: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1231–40.

    Article  Google Scholar 

  23. 23.

    S. Ji, W. Yang, F. Gao, D. Watson, and Z. Fan: Mater. Sci. Eng. A, 2013, vol. 564, pp. 130–9.

    CAS  Article  Google Scholar 

  24. 24.

    R. Schmid-Fetzer and F. Zhang: Calphad, 2018, vol. 61, pp. 246–63.

    CAS  Article  Google Scholar 

  25. 25.

    X. Cao and J. Campbell: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1425–35.

    CAS  Article  Google Scholar 

  26. 26.

    N. Isono, P. Smith, D. Turnbull, and M.J. Aziz: Metall. Mater. Trans. A, 1996, vol. 27, pp. 725–30.

    CAS  Article  Google Scholar 

Download references


The authors would like to acknowledge the National Science Foundation for supporting this work (Award CMMI-1432688). Dr. Yeou-Li Chu and Mr. Patrick Cheng of Ryobi Die Casting are also acknowledged for helpful discussions.

Author information



Corresponding author

Correspondence to A. A. Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 21, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cinkilic, E., Ridgeway, C.D., Yan, X. et al. A Formation Map of Iron-Containing Intermetallic Phases in Recycled Cast Aluminum Alloys. Metall Mater Trans A 50, 5945–5956 (2019). https://doi.org/10.1007/s11661-019-05469-6

Download citation