Skip to main content
Log in

Predicting Twin Nucleation in a Polycrystalline Mg Alloy Using Machine Learning Methods

  • 5th World Congress on Integrated Computational Materials Engineering
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Twinning is an important deformation mechanism for Mg and other hexagonal metals. While twin nucleation is known to depend on the size and crystal orientation of the parent grain, so far there is no satisfactory criterion to predict twin nucleation in a polycrystalline Mg alloy prior to its deformation. In this work, machine learning is employed to tackle this problem. From a single-phase, polycrystalline Mg-0.47 wt pct Ca extruded alloy, three micro-tensile specimens, E-0, E-45, and E-90, were fabricated with their tensile axis being 0, 45, and 90 deg from the extrusion direction. Each specimen was deformed by 4 pct tensile strain in a scanning electron microscope. Six hundred thirty-six grains from E-0, 572 grains from E-45, and 840 grains from E-90 were characterized by electron backscattered diffraction (EBSD) before and after deformation. Twin nucleation was identified in 27, 150, and 220 grains in E-0, E-45, and E-90, respectively. Eighteen attributes that can influence twin nucleation, such as grain diameter, c-axis direction, and Schmid factors, were computed for each grain. Five machine learning algorithms, including decision tree, tree ensemble (XGBoost), artificial neural network (ANN), support vector machine (SVM), and naïve Bayes, were used to build models to predict twin nucleation according to a grain’s 18 attribute values, with E-45 as the training set and the other two specimens as the test sets. The ANN and SVM models show the best performance, both achieving ~ 87 pct prediction accuracy for specimens E-45 and E-90. None of the models perform well for E-0 because of the imbalanced class distribution in this specimen. The unpredicted twin nucleation events in E-90 mostly originate from triple junctions or twin–twin transmission at grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol.39, pp. 1-57.

    Google Scholar 

  2. J. Wang, J.P. Hirth, and C.N. Tome: Acta Mater., 2009, vol.57, pp. 5521-5530.

    CAS  Google Scholar 

  3. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Acta Mater., 2004, vol.52, pp. 5093-5103.

    CAS  Google Scholar 

  4. B. Clausen, C.N. Tome, D.W. Brown, and S.R. Agnew: Acta Mater., 2008, vol.56, pp. 2456-2468.

    CAS  Google Scholar 

  5. G. Proust, C.N. Tome, A. Jain, and S.R. Agnew: Int. J. Plast., 2009, vol.25, pp. 861-880.

    CAS  Google Scholar 

  6. H. Wang, P.D. Wu, J. Wang, and C.N. Tome: Int. J. Plast., 2013, vol.49, pp. 36-52.

    Google Scholar 

  7. C.H. Liu, L. Jin, J. Dong, and F.H. Wang: Materials & Design, 2016, vol.111, pp. 369-374.

    CAS  Google Scholar 

  8. A. Chakkedath, T. Maiti, J. Bohlen, S. Yi, D. Letzig, P. Eisenlohr, and C.J. Boehlert: Metall. Mater. Trans. A, 2018, vol.49, pp. 2441-2454.

    Google Scholar 

  9. C.D. Barrett, H. El Kadiri, and M.A. Tschopp: J. Mech. Phys. Solids, 2012, vol.60, pp. 2084-2099.

    Google Scholar 

  10. M.R. Barnett: Scripta Mater., 2008, vol.59, pp. 696-698.

    CAS  Google Scholar 

  11. L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, and C.N. Tome: Acta Mater., 2009, vol.57, pp. 6047-6056.

    CAS  Google Scholar 

  12. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tome: Phil. Mag., 2010, vol.90, pp. 2161-2190.

    CAS  Google Scholar 

  13. A. Ghaderi and M.R. Barnett: Acta Mater., 2011, vol.59, pp. 7824-7839.

    CAS  Google Scholar 

  14. C.N. Tome, I.J. Beyerlein, J. Wang, and R.J. McCabe: JOM, 2011, vol.63, pp. 19-23.

    CAS  Google Scholar 

  15. H. Somekawa and T. Mukai: Mater. Sci. Eng. A, 2013, vol.561, pp. 378-385.

    CAS  Google Scholar 

  16. M.A. Kumar, M. Wronski, R.J. McCabe, L. Capolungo, K. Wierzbanowski, and C.N. Tome: Acta Mater., 2018, vol.148, pp. 123-132.

    Google Scholar 

  17. J. Koike, Y. Sato, and D. Ando: Mater. Trans., 2008, vol.49, pp. 2792-2800.

    CAS  Google Scholar 

  18. I.J. Beyerlein, R.J. McCabe, and C.N. Tome: J. Mech. Phys. Solids, 2011, vol.59, pp. 988-1003.

    CAS  Google Scholar 

  19. J.J. Jonas, S.J. Mu, T. Al-Samman, G. Gottstein, L. Jiang, and E. Martin: Acta Mater., 2011, vol.59, pp. 2046-2056.

    CAS  Google Scholar 

  20. S.J. Mu, J.J. Jonas, and G. Gottstein: Acta Mater., 2012, vol.60, pp. 2043-2053.

    CAS  Google Scholar 

  21. A. Khosravani, D.T. Fullwood, B.L. Adams, T.M. Rampton, M.P. Miles, and R.K. Mishra: Acta Mater., 2015, vol.100, pp. 202-214.

    CAS  Google Scholar 

  22. Z.Z. Shi, Y.D. Zhang, F. Wagner, P.A. Juan, S. Berbenni, L. Capolungo, J.S. Lecomte, and T. Richeton: Acta Mater., 2015, vol.83, pp. 17-28.

    CAS  Google Scholar 

  23. L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason: Metall. Mater. Trans. A, 2010, vol.41, pp. 421-430.

    CAS  Google Scholar 

  24. L. Wang, P. Eisenlohr, Y. Yang, T.R. Bieler, and M.A. Crimp: Scripta Mater., 2010, vol.63, pp. 827-830.

    CAS  Google Scholar 

  25. L. Wang, R. Barabash, T. Bieler, L. Wenjun, and P. Eisenlohr: Metall. Mater. Trans. A, 2013, vol.44, pp. 3664-3674.

    Google Scholar 

  26. D. Guan, B. Wynne, J. Gao, Y. Huang, and W. Rainforth: Acta Mater., 2019, 170, 1-14.

    Google Scholar 

  27. X. Hong, A. Godfrey, and W. Liu: Scripta Mater., 2016, vol.123, pp. 77-80.

    CAS  Google Scholar 

  28. P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, and A.J. Norquist: Nature, 2016, vol.533, pp. 73-77.

    CAS  Google Scholar 

  29. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim: npj Comput. Mater., 2017, 3, 54.

    Google Scholar 

  30. Y. Zhang and C. Ling: npj Comput. Mater., 2018, 4, 25.

    CAS  Google Scholar 

  31. A. Agrawal and A. Choudhary: APL Materials, 2016, vol.4, 053202.

    Google Scholar 

  32. A. Rovinelli, M.D. Sangid, H. Proudhon, and W. Ludwig: npj Comput. Mater., 2018, 4, 35.

    Google Scholar 

  33. S.R. Kalidindi and M. De Graef: Annu. Rev. Mater. Res., 2015, vol 45, pp. 171-193.

    CAS  Google Scholar 

  34. B.L. DeCost, T. Francis, and E.A. Holm: Acta Mater., 2017, vol.133, pp. 30-40.

    CAS  Google Scholar 

  35. W. Li, K.G. Field, and D. Morgan: npj Comput. Mater., 2018, 4, 36.

    Google Scholar 

  36. A. Mangal and E.A. Holm: Int. J. Plast., 2018, vol.111, pp. 122-134.

    CAS  Google Scholar 

  37. A. Mangal and E.A. Holm: Int. J. Plast., 2019, vol.114, pp. 1-14.

    CAS  Google Scholar 

  38. A.D. Orme, I. Chelladurai, T.M. Rampton, D.T. Fullwood, A. Khosravani, M.P. Miles, and R.K. Mishra: Comp. Mater. Sci., 2016, vol.124, pp. 353-363.

    CAS  Google Scholar 

  39. D.M.W. Powers: J. Mach. Learning Technol., 2, 37-63 (2007)

    Google Scholar 

  40. P.N. Tan, M. Steinbach, and V. Kumar: Introduction to Data Mining, Pearson, New York, 2005.

    Google Scholar 

  41. T. Chen and C. Guestrin: XGBoost: A Scalable Tree Boosting System. ACM, San Francisco, 2016, pp. 785-794.

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Nos. 51671127 and 51631006) and a collaborative research project (No. 18X120010001) between the University of Michigan and Shanghai Jiao Tong University that applies data science to Mg alloy design. We thank Dr. Kai Yu for valuable discussions about machine learning. X.Z. also acknowledges the support from the Science and Technology Commission of Shanghai Municipality (Grant No. 16DZ2260600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 22, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Z., Wang, L., Zhu, G. et al. Predicting Twin Nucleation in a Polycrystalline Mg Alloy Using Machine Learning Methods. Metall Mater Trans A 50, 5543–5560 (2019). https://doi.org/10.1007/s11661-019-05468-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05468-7

Navigation