Influence of Composition on Nanoindentation Response of Ni-Zr Alloy Thin Films

Abstract

Variation in composition of an alloy thin film can alter its microstructure, which provides control over its nanomechanical behavior. To explore this idea, we fabricate thin films of Ni-Zr binary alloys with three different compositions and degrees of crystallinity. At low Zr-content, the microstructure is nanocrystalline, which becomes a mixture of amorphous and nanocrystalline phases at intermediate Zr-content. Further, the increase in Zr-content yields a predominantly amorphous film. Nanoindentations of the films reveal negative strain rate sensitivities over the investigated range of composition, although the effect becomes more pronounced with an increase in the Zr-content. Furthermore, the experiments render a closer view of the nanoindentation creep deformation of these Ni-Zr thin films. In particular, we have examined the influence of loading strain rate and composition on the creep compliance and retardation spectra, which provide valuable insight into the timescales associated with the time-dependent relaxation mechanisms. While the decrease in crystallinity mitigates the creep resistance, an increase in the loading strain rate is found to give rise to fast relaxation mechanisms corresponding to relatively smaller timescales. This study also introduces and highlights the prospects of analyzing the instantaneous strain rate sensitivity measured during the nanoindentation creep, which shows temporal features qualitatively analogous to that of the retardation spectra.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    D. Prasanth, K.P. Sibin, and H.C. Barshilia: Thin Solid Films, 2019, vol. 673, pp. 78–85.

    CAS  Google Scholar 

  2. 2.

    N.S. Babu and M. AbdulKhadar: Appl. Surf. Sci., 2019, vol. 474, pp. 34–41.

    CAS  Google Scholar 

  3. 3.

    O. Crisan, F. Vasiliu, A.D. Crisan, I. Mercioniu, G. Schinteie, and A. Leca: Materials Characterization, 2019, vol. 152, pp. 245–52.

    CAS  Google Scholar 

  4. 4.

    X.D. Zheng: Vacuum, 2019, vol. 165, pp. 46–50.

    CAS  Google Scholar 

  5. 5.

    L. Moraga, C. Arenas, R. Henriquez, S. Bravo, and B. Solis: Phys. B: Condensed Matter, 2016, vol. 499, pp. 17–23.

    CAS  Google Scholar 

  6. 6.

    R. Xu, Y. Ji, R. Bouchilaoun, F. Qian, M. Li, X. Zhang, R. Tang, R. Zhao, S. Misra, H. Wang, W. Li, C. Kan, D. Shi, J. Fan, and H. Yang: Ceram. Int., 2019, vol. 45, pp. 11304–8.

    CAS  Google Scholar 

  7. 7.

    O. Crisan, F. Vasiliu, A.D. Crisan, I. Mercioniu, G. Schinteie, and A. Leca: Mater. Charact., 2019, vol. 152, pp. 245–52.

    CAS  Google Scholar 

  8. 8.

    M. Apreutesei, P. Steyer, L. Joly-Pottuz, A. Billard, J. Qiao, S. Cardinal, F. Sanchette, J.M. Pelletier, and C. Esnouf: Thin Solid Films, 2014, vol. 561, pp. 53–9.

    CAS  Google Scholar 

  9. 9.

    J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, and C. Rullyani: Thin Solid Films, 2012, vol. 520, pp. 5097–122.

    CAS  Google Scholar 

  10. 10.

    T. Oellers, R. Raghavan, J. Chakraborty, C. Kirchlechner, A. Kostka, C.H. Liebscher, G. Dehm, and A. Ludwig: Thin Solid Films, 2018, vol. 645, pp. 193–202.

    CAS  Google Scholar 

  11. 11.

    Z. Hou, P. Zhang, K. Wu, Y. Wang, G. Liu, G. Zhang, and J. Sun: Int. J. Refract. Met. Hard Mater., 2019, vol. 82, pp. 7–14.

    CAS  Google Scholar 

  12. 12.

    W. Blum and P. Eisenlohr: J. Mater. Sci. Tech., 2017, vol. 33, pp. 718–22.

    Google Scholar 

  13. 13.

    C. He, L. Xie, J. Zhang, G. Ma, Z. Du, J. Wang, and D. Zhao: Surf. Coat. Technol., 2017, vol. 320, pp. 472–7.

    CAS  Google Scholar 

  14. 14.

    V.S. Saji: Materialia, 2018, vol. 3, pp. 1–11.

    Google Scholar 

  15. 15.

    G. Shanker, P. Prathap, K.M.K. Srivatsa, and P. Singh: Curr. Appl. Phys., 2019, vol. 19, pp. 697–703.

    Google Scholar 

  16. 16.

    Y.G. Yushkov, E.M. Oks, A. V Tyunkov, and D.B. Zolotukhin: Ceram. Int., 2019, vol. 45, pp. 9782–7.

    CAS  Google Scholar 

  17. 17.

    S. Singh, S. Chang, C.S. Kaira, J.K. Baldwin, N. Mara, and N. Chawla: Mater. Des., 2019, vol. 168, p. 107670.

    CAS  Google Scholar 

  18. 18.

    O. V Sobol, S.N. Dub, A.D. Pogrebnjak, R.P. Mygushchenko, A.A. Postelnyk, A. V Zvyagolsky, and G.N. Tolmachova: Thin Solid Films, 2018, vol. 662, pp. 137–44.

    CAS  Google Scholar 

  19. 19.

    B.P. Sahu and R. Mitra: MRS Advances, 2017, vol. 2, pp. 1441–8.

    CAS  Google Scholar 

  20. 20.

    Z. Qi, Z. Wu, D. Zhang, B. Wei, J. Wang, and Z. Wang: Vaccum, 2017, vol. 145, pp. 136–43.

    CAS  Google Scholar 

  21. 21.

    A. Büttner, A. Probst, F. Emmerich, C. Damm, B. Rellinghaus, T. Döhring, and M. Stollenwerk: Thin Solid Films, 2018, vol. 662, pp. 41–6.

    Google Scholar 

  22. 22.

    M. Ghidelli, S. Gravier, J.J. Blandin, P. Djemia, F. Mompiou, G. Abadias, J.P. Raskin, and T. Pardoen: Acta Mater., 2015, vol. 90, pp. 232–41.

    CAS  Google Scholar 

  23. 23.

    T. Oellers, R. Raghavan, J. Chakraborty, C. Kirchlechner, G. Dehm, A. Ludwig, A. Kostka, and C.H. Liebscher: Thin Solid Films, 2018, vol. 645, pp. 193–202.

    CAS  Google Scholar 

  24. 24.

    J.T. Zhao, J.Y. Zhang, H.Z. Yuan, K. Wu, G. Liu, and J. Sun: Scripta Mater., 2018, vol. 152, pp. 146–9.

    CAS  Google Scholar 

  25. 25.

    P. Zeman, M. Zitek, S. Zuzjakova, and R. Cerstvy: J. Alloys Compd., 2017, vol. 696, pp. 1298–306.

    CAS  Google Scholar 

  26. 26.

    Y.Q. Wang, J.Y. Zhang, X.Q. Liang, K. Wu, G. Liu, and J. Sun: Acta Mater., 2015, vol. 95, pp. 132–44.

    CAS  Google Scholar 

  27. 27.

    F. Xue, P. Huang, M.B. Liu, K.W. Xu, F. Wang, and T.J. Lu: Mater. Sci. Eng. A, 2017, vol. 684, pp. 84–9.

    CAS  Google Scholar 

  28. 28.

    F.X. Liu, Y.F. Gao, and P.K. Liaw: Metall. Mater. Trans. A, https://doi.org/10.1007/s11661-007-9399-8.

    Article  Google Scholar 

  29. 29.

    B.P. Sahu, A. Dutta, and R. Mitra: J. Alloys Compd., 2019, vol. 784, pp. 488–99.

    CAS  Google Scholar 

  30. 30.

    J.T. Zhao, J.Y. Zhang, L.F. Cao, Y.Q. Wang, P. Zhang, K. Wu, G. Liu, and J. Sun: Acta Mater., 2017, vol. 132, pp. 550–64.

    CAS  Google Scholar 

  31. 31.

    T. Guo, P. Huang, K.W. Xu, F. Wang, and T.J. Lu: Mater. Sci. Eng. A, 2016, vol. 676, pp. 501–5.

    CAS  Google Scholar 

  32. 32.

    N. Kaur and D. Kaur: Surf. Coat. Technol., 2014, vol. 260, pp. 260–5.

    CAS  Google Scholar 

  33. 33.

    Y. Ma, G.J. Peng, Y.H. Feng, and T.H. Zhang: J. Non-Cryst. Solids, 2017, vol. 465, pp. 8–16.

    CAS  Google Scholar 

  34. 34.

    J. Hu, G. Sun, X. Zhang, G. Wang, Z. Jiang, S. Han, J. Zhang, and J. Lian: J. Alloys Compd., 2015, vol. 647, pp. 670–80.

    CAS  Google Scholar 

  35. 35.

    Z.H. Cao, P.Y. Li, and X.K. Meng: Mater. Sci. Eng. A, 2009, vol. 516, pp. 253–8.

    Google Scholar 

  36. 36.

    B.P. Sahu, C.K. Sarangi, and R. Mitra: Thin Solid Films, 2018, vol. 660, pp. 31–45.

    CAS  Google Scholar 

  37. 37.

    R. Bormann, F. Gärtner, and K. Zöltzer: J. less-comm. metals, 1988, vol. 145, pp. 19–29.

    CAS  Google Scholar 

  38. 38.

    M. Ghidelli, S. Gravier, J.J. Blandin, T. Pardoen, J.P. Raskin, and F. Mompiou: J. Alloys Compd., 2015, vol. 615, pp. S348–51.

    Google Scholar 

  39. 39.

    Z. Altounian and J.O. Strom-Olsen: Phys. Rev. B, 1983, vol. 27, pp. 4149–56.

    CAS  Google Scholar 

  40. 40.

    Z. Altounian, T. Guo-hua, and J.O. Strom-Olsen: J. Appl. Phys., 1983, vol. 54, pp. 3111–6.

    CAS  Google Scholar 

  41. 41.

    H. Turnow, H. Wendrock, S. Menzel, T. Gemming, and J. Eckert: Thin Solid Films, 2014, vol. 561, pp. 48–52.

    CAS  Google Scholar 

  42. 42.

    B.P. Sahu, A. Chatterjee, A. Dutta, and R. Mitra: Philos. Mag., 2019, vol. 99, pp. 2545–61.

    CAS  Google Scholar 

  43. 43.

    K. Liu, Y. Li, J. Wang, and Q. Ma: J. Alloys Compd., 2015, vol. 624, pp. 234–40.

    CAS  Google Scholar 

  44. 44.

    T. Hantschel, E.M. Chow, D. Rudolph, C. Shih, L. Wong, and D.K. Fork: Microelectron. Eng., 2003, vol. 68, pp. 803–9.

    Google Scholar 

  45. 45.

    L. Mihailov, T. Spassov, and M. Bojinov: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 10499–506.

    CAS  Google Scholar 

  46. 46.

    D. Pan, A. Inoue, T. Sakurai, and M.W. Chen: Proc. Natl. Acad. Sci., 2008, vol. 105, pp. 14769–72.

    CAS  Google Scholar 

  47. 47.

    V. Maier-Kiener and K. Durst: JOM, 2017, vol. 69, pp. 2246–55.

    Google Scholar 

  48. 48.

    B.N. Lucas and W.C. Oliver: Metall. Mater. Trans. A, 1999, vol. 30, pp. 601–10.

    CAS  Google Scholar 

  49. 49.

    T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Acta Mater., 2011, vol. 59, pp. 1619–31.

    CAS  Google Scholar 

  50. 50.

    P. Gong, J. Jin, L. Deng, S. Wang, J. Gu, K. Yao, and X. Wang: Mater. Sci. Eng. A, 2017, vol. 688, pp. 174–9.

    CAS  Google Scholar 

  51. 51.

    J. Hu, W. Zhang, G. Bi, J. Lu, W. Huo, and Y. Zhang: Mater. Sci. Eng. A, 2017, vol. 698, pp. 348–55.

    CAS  Google Scholar 

  52. 52.

    Y. Liu, C. Huang, H. Bei, X. He, and W. Hu: Mater. Lett., 2012, vol. 70, pp. 26–9.

    CAS  Google Scholar 

  53. 53.

    A. Chatterjee, M. Srivastava, G. Sharma, and J.K. Chakravartty: Mater. Lett., 2014, vol. 130, pp. 29–31.

    CAS  Google Scholar 

  54. 54.

    M. Haghshenas, Y. Wang, Y.T. Cheng, and M. Gupta: Mater. Sci. Eng. A, 2018, vol. 716, pp. 63–71.

    CAS  Google Scholar 

  55. 55.

    Y. Ogino, T. Yamasaki, and B.L. Shen: Metall. Mater. Trans. B, 1997, vol. 28, pp. 299–306.

    CAS  Google Scholar 

  56. 56.

    Y.H. Chen, J.C. Huang, X.H. Du, and X. Wang: Intermetallics, 2016, vol. 68, pp. 101–6.

    CAS  Google Scholar 

  57. 57.

    W.R. Jian, L. Wang, X.H. Yao, and S.N. Luo: Comput. Mater. Sci., 2018, vol. 154, pp. 225–33.

    CAS  Google Scholar 

  58. 58.

    G. Patriarche, E. Le Bourhis, M.M.O. Khayyat, and M.M. Chaudhri: J. Appl. Phys., 2004, vol. 96, pp. 1464–8.

    CAS  Google Scholar 

  59. 59.

    Y.H. Chen, J.C. Huang, L. Wang, and T.G. Nieh: Intermetallics, 2013, vol. 41, pp. 58–62.

    Google Scholar 

  60. 60.

    J. Zhao, P. Huang, K.W. Xu, F. Wang, and T.J. Lu: Thin Solid Films, 2018, vol. 653, pp. 365–70.

    CAS  Google Scholar 

  61. 61.

    Z. Ma, S. Long, Y. Pan, and Y. Zhou: Journal of Materials Science, 2008, vol. 43, pp. 5952–5.

    CAS  Google Scholar 

  62. 62.

    S. Yang, Y.W. Zhang, and K. Zeng: J. Appl. Phys., 2004, vol. 95, pp. 3655–66.

    CAS  Google Scholar 

  63. 63.

    J. Wu, Y. Pan, and J. Pi: Physica B: Condensed Matter, 2013, vol. 421, pp. 57–62.

    CAS  Google Scholar 

  64. 64.

    P. Gong, S. Wang, F. Li, and X. Wang: Physica B: Cond. Matter, 2018, vol. 530, pp. 7–14.

    CAS  Google Scholar 

  65. 65.

    F. Wang, J.M. Li, P. Huang, W.L. Wang, T.J. Lu, and K.W. Xu: Intermetallics, 2013, vol. 38, pp. 156–60.

    CAS  Google Scholar 

  66. 66.

    Y. Wang, J. Zhang, K. Wu, G. Liu, D. Kiener, and J. Sun: Mater. Res. Lett., 2018, vol. 6, pp. 22–8.

    CAS  Google Scholar 

  67. 67.

    T.H. Zhang, J.H. Ye, Y.H. Feng, and Y. Ma: Mater. Sci. Eng. A, 2017, vol. 685, pp. 294–9.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Rajiv Kundu, Mr. Tapas Paul, and Mr. Santu Mudliyar of the Central Research Facility, Indian Institute of Technology, Kharagpur for the technical assistance with various experimental studies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bibhu Prasad Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 3, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahu, B.P., Dutta, A. & Mitra, R. Influence of Composition on Nanoindentation Response of Ni-Zr Alloy Thin Films. Metall Mater Trans A 50, 5656–5669 (2019). https://doi.org/10.1007/s11661-019-05467-8

Download citation