Abstract
Variation in composition of an alloy thin film can alter its microstructure, which provides control over its nanomechanical behavior. To explore this idea, we fabricate thin films of Ni-Zr binary alloys with three different compositions and degrees of crystallinity. At low Zr-content, the microstructure is nanocrystalline, which becomes a mixture of amorphous and nanocrystalline phases at intermediate Zr-content. Further, the increase in Zr-content yields a predominantly amorphous film. Nanoindentations of the films reveal negative strain rate sensitivities over the investigated range of composition, although the effect becomes more pronounced with an increase in the Zr-content. Furthermore, the experiments render a closer view of the nanoindentation creep deformation of these Ni-Zr thin films. In particular, we have examined the influence of loading strain rate and composition on the creep compliance and retardation spectra, which provide valuable insight into the timescales associated with the time-dependent relaxation mechanisms. While the decrease in crystallinity mitigates the creep resistance, an increase in the loading strain rate is found to give rise to fast relaxation mechanisms corresponding to relatively smaller timescales. This study also introduces and highlights the prospects of analyzing the instantaneous strain rate sensitivity measured during the nanoindentation creep, which shows temporal features qualitatively analogous to that of the retardation spectra.
This is a preview of subscription content, log in to check access.













References
- 1.
D. Prasanth, K.P. Sibin, and H.C. Barshilia: Thin Solid Films, 2019, vol. 673, pp. 78–85.
- 2.
N.S. Babu and M. AbdulKhadar: Appl. Surf. Sci., 2019, vol. 474, pp. 34–41.
- 3.
O. Crisan, F. Vasiliu, A.D. Crisan, I. Mercioniu, G. Schinteie, and A. Leca: Materials Characterization, 2019, vol. 152, pp. 245–52.
- 4.
X.D. Zheng: Vacuum, 2019, vol. 165, pp. 46–50.
- 5.
L. Moraga, C. Arenas, R. Henriquez, S. Bravo, and B. Solis: Phys. B: Condensed Matter, 2016, vol. 499, pp. 17–23.
- 6.
R. Xu, Y. Ji, R. Bouchilaoun, F. Qian, M. Li, X. Zhang, R. Tang, R. Zhao, S. Misra, H. Wang, W. Li, C. Kan, D. Shi, J. Fan, and H. Yang: Ceram. Int., 2019, vol. 45, pp. 11304–8.
- 7.
O. Crisan, F. Vasiliu, A.D. Crisan, I. Mercioniu, G. Schinteie, and A. Leca: Mater. Charact., 2019, vol. 152, pp. 245–52.
- 8.
M. Apreutesei, P. Steyer, L. Joly-Pottuz, A. Billard, J. Qiao, S. Cardinal, F. Sanchette, J.M. Pelletier, and C. Esnouf: Thin Solid Films, 2014, vol. 561, pp. 53–9.
- 9.
J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, and C. Rullyani: Thin Solid Films, 2012, vol. 520, pp. 5097–122.
- 10.
T. Oellers, R. Raghavan, J. Chakraborty, C. Kirchlechner, A. Kostka, C.H. Liebscher, G. Dehm, and A. Ludwig: Thin Solid Films, 2018, vol. 645, pp. 193–202.
- 11.
Z. Hou, P. Zhang, K. Wu, Y. Wang, G. Liu, G. Zhang, and J. Sun: Int. J. Refract. Met. Hard Mater., 2019, vol. 82, pp. 7–14.
- 12.
W. Blum and P. Eisenlohr: J. Mater. Sci. Tech., 2017, vol. 33, pp. 718–22.
- 13.
C. He, L. Xie, J. Zhang, G. Ma, Z. Du, J. Wang, and D. Zhao: Surf. Coat. Technol., 2017, vol. 320, pp. 472–7.
- 14.
V.S. Saji: Materialia, 2018, vol. 3, pp. 1–11.
- 15.
G. Shanker, P. Prathap, K.M.K. Srivatsa, and P. Singh: Curr. Appl. Phys., 2019, vol. 19, pp. 697–703.
- 16.
Y.G. Yushkov, E.M. Oks, A. V Tyunkov, and D.B. Zolotukhin: Ceram. Int., 2019, vol. 45, pp. 9782–7.
- 17.
S. Singh, S. Chang, C.S. Kaira, J.K. Baldwin, N. Mara, and N. Chawla: Mater. Des., 2019, vol. 168, p. 107670.
- 18.
O. V Sobol, S.N. Dub, A.D. Pogrebnjak, R.P. Mygushchenko, A.A. Postelnyk, A. V Zvyagolsky, and G.N. Tolmachova: Thin Solid Films, 2018, vol. 662, pp. 137–44.
- 19.
B.P. Sahu and R. Mitra: MRS Advances, 2017, vol. 2, pp. 1441–8.
- 20.
Z. Qi, Z. Wu, D. Zhang, B. Wei, J. Wang, and Z. Wang: Vaccum, 2017, vol. 145, pp. 136–43.
- 21.
A. Büttner, A. Probst, F. Emmerich, C. Damm, B. Rellinghaus, T. Döhring, and M. Stollenwerk: Thin Solid Films, 2018, vol. 662, pp. 41–6.
- 22.
M. Ghidelli, S. Gravier, J.J. Blandin, P. Djemia, F. Mompiou, G. Abadias, J.P. Raskin, and T. Pardoen: Acta Mater., 2015, vol. 90, pp. 232–41.
- 23.
T. Oellers, R. Raghavan, J. Chakraborty, C. Kirchlechner, G. Dehm, A. Ludwig, A. Kostka, and C.H. Liebscher: Thin Solid Films, 2018, vol. 645, pp. 193–202.
- 24.
J.T. Zhao, J.Y. Zhang, H.Z. Yuan, K. Wu, G. Liu, and J. Sun: Scripta Mater., 2018, vol. 152, pp. 146–9.
- 25.
P. Zeman, M. Zitek, S. Zuzjakova, and R. Cerstvy: J. Alloys Compd., 2017, vol. 696, pp. 1298–306.
- 26.
Y.Q. Wang, J.Y. Zhang, X.Q. Liang, K. Wu, G. Liu, and J. Sun: Acta Mater., 2015, vol. 95, pp. 132–44.
- 27.
F. Xue, P. Huang, M.B. Liu, K.W. Xu, F. Wang, and T.J. Lu: Mater. Sci. Eng. A, 2017, vol. 684, pp. 84–9.
- 28.
F.X. Liu, Y.F. Gao, and P.K. Liaw: Metall. Mater. Trans. A, https://doi.org/10.1007/s11661-007-9399-8.
- 29.
B.P. Sahu, A. Dutta, and R. Mitra: J. Alloys Compd., 2019, vol. 784, pp. 488–99.
- 30.
J.T. Zhao, J.Y. Zhang, L.F. Cao, Y.Q. Wang, P. Zhang, K. Wu, G. Liu, and J. Sun: Acta Mater., 2017, vol. 132, pp. 550–64.
- 31.
T. Guo, P. Huang, K.W. Xu, F. Wang, and T.J. Lu: Mater. Sci. Eng. A, 2016, vol. 676, pp. 501–5.
- 32.
N. Kaur and D. Kaur: Surf. Coat. Technol., 2014, vol. 260, pp. 260–5.
- 33.
Y. Ma, G.J. Peng, Y.H. Feng, and T.H. Zhang: J. Non-Cryst. Solids, 2017, vol. 465, pp. 8–16.
- 34.
J. Hu, G. Sun, X. Zhang, G. Wang, Z. Jiang, S. Han, J. Zhang, and J. Lian: J. Alloys Compd., 2015, vol. 647, pp. 670–80.
- 35.
Z.H. Cao, P.Y. Li, and X.K. Meng: Mater. Sci. Eng. A, 2009, vol. 516, pp. 253–8.
- 36.
B.P. Sahu, C.K. Sarangi, and R. Mitra: Thin Solid Films, 2018, vol. 660, pp. 31–45.
- 37.
R. Bormann, F. Gärtner, and K. Zöltzer: J. less-comm. metals, 1988, vol. 145, pp. 19–29.
- 38.
M. Ghidelli, S. Gravier, J.J. Blandin, T. Pardoen, J.P. Raskin, and F. Mompiou: J. Alloys Compd., 2015, vol. 615, pp. S348–51.
- 39.
Z. Altounian and J.O. Strom-Olsen: Phys. Rev. B, 1983, vol. 27, pp. 4149–56.
- 40.
Z. Altounian, T. Guo-hua, and J.O. Strom-Olsen: J. Appl. Phys., 1983, vol. 54, pp. 3111–6.
- 41.
H. Turnow, H. Wendrock, S. Menzel, T. Gemming, and J. Eckert: Thin Solid Films, 2014, vol. 561, pp. 48–52.
- 42.
B.P. Sahu, A. Chatterjee, A. Dutta, and R. Mitra: Philos. Mag., 2019, vol. 99, pp. 2545–61.
- 43.
K. Liu, Y. Li, J. Wang, and Q. Ma: J. Alloys Compd., 2015, vol. 624, pp. 234–40.
- 44.
T. Hantschel, E.M. Chow, D. Rudolph, C. Shih, L. Wong, and D.K. Fork: Microelectron. Eng., 2003, vol. 68, pp. 803–9.
- 45.
L. Mihailov, T. Spassov, and M. Bojinov: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 10499–506.
- 46.
D. Pan, A. Inoue, T. Sakurai, and M.W. Chen: Proc. Natl. Acad. Sci., 2008, vol. 105, pp. 14769–72.
- 47.
V. Maier-Kiener and K. Durst: JOM, 2017, vol. 69, pp. 2246–55.
- 48.
B.N. Lucas and W.C. Oliver: Metall. Mater. Trans. A, 1999, vol. 30, pp. 601–10.
- 49.
T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Acta Mater., 2011, vol. 59, pp. 1619–31.
- 50.
P. Gong, J. Jin, L. Deng, S. Wang, J. Gu, K. Yao, and X. Wang: Mater. Sci. Eng. A, 2017, vol. 688, pp. 174–9.
- 51.
J. Hu, W. Zhang, G. Bi, J. Lu, W. Huo, and Y. Zhang: Mater. Sci. Eng. A, 2017, vol. 698, pp. 348–55.
- 52.
Y. Liu, C. Huang, H. Bei, X. He, and W. Hu: Mater. Lett., 2012, vol. 70, pp. 26–9.
- 53.
A. Chatterjee, M. Srivastava, G. Sharma, and J.K. Chakravartty: Mater. Lett., 2014, vol. 130, pp. 29–31.
- 54.
M. Haghshenas, Y. Wang, Y.T. Cheng, and M. Gupta: Mater. Sci. Eng. A, 2018, vol. 716, pp. 63–71.
- 55.
Y. Ogino, T. Yamasaki, and B.L. Shen: Metall. Mater. Trans. B, 1997, vol. 28, pp. 299–306.
- 56.
Y.H. Chen, J.C. Huang, X.H. Du, and X. Wang: Intermetallics, 2016, vol. 68, pp. 101–6.
- 57.
W.R. Jian, L. Wang, X.H. Yao, and S.N. Luo: Comput. Mater. Sci., 2018, vol. 154, pp. 225–33.
- 58.
G. Patriarche, E. Le Bourhis, M.M.O. Khayyat, and M.M. Chaudhri: J. Appl. Phys., 2004, vol. 96, pp. 1464–8.
- 59.
Y.H. Chen, J.C. Huang, L. Wang, and T.G. Nieh: Intermetallics, 2013, vol. 41, pp. 58–62.
- 60.
J. Zhao, P. Huang, K.W. Xu, F. Wang, and T.J. Lu: Thin Solid Films, 2018, vol. 653, pp. 365–70.
- 61.
Z. Ma, S. Long, Y. Pan, and Y. Zhou: Journal of Materials Science, 2008, vol. 43, pp. 5952–5.
- 62.
S. Yang, Y.W. Zhang, and K. Zeng: J. Appl. Phys., 2004, vol. 95, pp. 3655–66.
- 63.
J. Wu, Y. Pan, and J. Pi: Physica B: Condensed Matter, 2013, vol. 421, pp. 57–62.
- 64.
P. Gong, S. Wang, F. Li, and X. Wang: Physica B: Cond. Matter, 2018, vol. 530, pp. 7–14.
- 65.
F. Wang, J.M. Li, P. Huang, W.L. Wang, T.J. Lu, and K.W. Xu: Intermetallics, 2013, vol. 38, pp. 156–60.
- 66.
Y. Wang, J. Zhang, K. Wu, G. Liu, D. Kiener, and J. Sun: Mater. Res. Lett., 2018, vol. 6, pp. 22–8.
- 67.
T.H. Zhang, J.H. Ye, Y.H. Feng, and Y. Ma: Mater. Sci. Eng. A, 2017, vol. 685, pp. 294–9.
Acknowledgments
The authors thank Mr. Rajiv Kundu, Mr. Tapas Paul, and Mr. Santu Mudliyar of the Central Research Facility, Indian Institute of Technology, Kharagpur for the technical assistance with various experimental studies.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted July 3, 2019.
Rights and permissions
About this article
Cite this article
Sahu, B.P., Dutta, A. & Mitra, R. Influence of Composition on Nanoindentation Response of Ni-Zr Alloy Thin Films. Metall Mater Trans A 50, 5656–5669 (2019). https://doi.org/10.1007/s11661-019-05467-8
Received:
Published:
Issue Date: