Microstructure and Mechanical Properties of Zamak 3 Alloy Subjected to Sliding Friction Treatment

Abstract

With aim to enhance the understanding of the relationship between the microstructure and mechanical properties of severe plastic-deformed Zn alloys, this work investigates the microstructural evolution and underlying deformation mechanisms of Zamak 3 alloy subjected to sliding friction treatment (SFT). With an increase in the strain from the matrix to the surface of the SFT Zn alloy, three types of microstructural characteristics are observed: (i) Gradual refinement of the Zn grains, (ii) First increase and then decrease in twin density, and (iii) Gradually elongated/broken eutectic phases. The results of mechanical tests reveal that work hardening plays a dominant role until strong softening resulting from microstructural refinement. The competition between hardening and softening related to the microstructural evolution determines the specific mechanical properties of Zn alloys.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    H. Wang, B. Yu, W. Wang, G. Ren, W. Liang and J. Zhang: J. Alloys Comps., 2014, vol. 582, pp. 457-60.

    CAS  Article  Google Scholar 

  2. 2.

    B.K. Prasad: Metal Science Journal, 2013, vol. 19, pp. 327-35.

    Google Scholar 

  3. 3.

    T. Savaşkan, G. Pürçek and S. Murphy: Wear, 2002, vol. 252, pp. 693-703.

    Article  Google Scholar 

  4. 4.

    G. Purcek, B.S. Altan, I. Miskioglu and P.H. Ooi: J. Mater. Process. Tech., 2004, vol. 148, pp. 279-87.

    CAS  Article  Google Scholar 

  5. 5.

    H. Pinto and F.J.G. Silva: Procedia Manuf., 2017, vol. 11, pp. 517-25.

    Article  Google Scholar 

  6. 6.

    W.J. Kim, C.S. Chung, D.S. Ma, S.I. Hong and H.K. Kim: Scr. Mater., 2003, vol. 49, pp. 333-38.

    CAS  Article  Google Scholar 

  7. 7.

    Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579-83.

    CAS  Article  Google Scholar 

  8. 8.

    N. Lugo, N. Llorca, J.M. Cabrera and Z. Horita: Mat. Sci. Eng. A, 2008, vol. 477, pp. 366-71.

    Article  Google Scholar 

  9. 9.

    L.C. Zhang and L.Y. Chen: Adv. Eng. Mater., 2019, vol. 21, pp. 1801215.

    Article  Google Scholar 

  10. 10.

    L. Wang, L. Xie, Y. Lv, L.C. Zhang, L. Chen, M. Qiang, Q. Jiao, Z. Di and W. Lu: Acta Mater., 2017, vol. 131, pp. 499-510.

    CAS  Article  Google Scholar 

  11. 11.

    K. Lu and J. Lu: Mat. Sci. Eng. A, 2004, vol. 375-377, pp. 38-45.

    Article  Google Scholar 

  12. 12.

    X.C. Liu, H.W. Zhang and K. Lu: Science, 2013, vol. 342, pp. 337-40.

    CAS  Article  Google Scholar 

  13. 13.

    Y.S. Zhang, P.X. Zhang, H.Z. Niu, C. Chen, G. Wang, D.H. Xiao, X.H. Chen, Z.T. Yu, S.B. Yuan and X.F. Bai: Mat. Sci. Eng. A, 2014, vol. 607, pp. 351-55.

    CAS  Article  Google Scholar 

  14. 14.

    K. Lu: Acta Metall. Sin, 2015, vol. 51, pp. 1-10.

    Google Scholar 

  15. 15.

    X.L. Wu, P. Jiang, L. Chen, F.P. Yuan and Y.T. Zhu: Proc. Natl. Acad. Sci., 2014, vol. 111, pp. 7197-201.

    CAS  Article  Google Scholar 

  16. 16.

    T.H. Fang, W.L. Li, N.R. Tao and K. Lu: Science, 2011, vol. 331, pp. 1587-90.

    CAS  Article  Google Scholar 

  17. 17.

    G. Pürçek: J. Mater. Process.Tech., 2005, vol. 169, pp. 242-48.

    Article  Google Scholar 

  18. 18.

    T.-S. Cho, H.-J. Lee, B. Ahn, M. Kawasaki and T.G. Langdon: Acta Mater., 2014, vol. 72, pp. 67-79.

    CAS  Article  Google Scholar 

  19. 19.

    Y.S. Zhang, Q.M. Wei, H.Z. Niu, Y.S. Li, C. Chen, Z.T. Yu, X.F. Bai and P.X. Zhang: Int. J. Refract. Met. H., 2014, vol. 45, pp. 71-75.

    CAS  Article  Google Scholar 

  20. 20.

    T.B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, 1990.

    Google Scholar 

  21. 21.

    W. Zhang, J.W. Lu, W.T. Huo, Y.S. Zhang and Q. Wei: Philos. Mag., 2018, vol. 98, pp. 1576-93.

    CAS  Article  Google Scholar 

  22. 22.

    J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1-157.

    Article  Google Scholar 

  23. 23.

    M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, J. Mater. Res. 11, 2128–30 (1997).

    Article  Google Scholar 

  24. 24.

    M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R.Z. Valiev and T.G. Langdon: Mat. Sci. Eng. A, 1998, vol. 241, pp. 122-28.

    Article  Google Scholar 

  25. 25.

    X. Zhang, H. Wang, R. Scattergood, J. Narayan, C. Koch, A. Sergueeve and A. Mukherjee: Acta Mater., 2002, vol. 50, pp. 4823-30.

    CAS  Article  Google Scholar 

  26. 26.

    K.A. Padmanabhan, R.A. Vasin and F.U. Enikeev, Superplastic Flow, Phenomenology and Mechanics, Springer-Verlag Berlin Heidelberg GmbH, New York, 2001.

    Google Scholar 

  27. 27.

    I.-C. Choi, Y.-J. Kim, B. Ahn, M. Kawasaki, T.G. Langdon and J.-i. Jang: Scr. Mater., 2014, vol. 75, pp. 102-05.

    CAS  Article  Google Scholar 

  28. 28.

    M.T.A. El-Khair, A. Daoud and A. Ismail: Mater. Lett., 2004, vol. 58, pp. 1754-60.

    Article  Google Scholar 

  29. 29.

    D. Vojtěch, J. Kubásek, J. Šerák and P. Novák: Acta Mater., 2011, vol. 7, pp. 3515-22.

    Google Scholar 

  30. 30.

    S.C. Sharma, B.M. Girish, D.R. Somashekar, R. Kamath and B.M. Satish: Compos. Sci. Technol. 1999, vol. 59, pp. 1805-12.

    CAS  Article  Google Scholar 

  31. 31.

    Y.F. Wang, C.X. Huang, M.S. Wang, Y.S. Li and Y.T. Zhu: Scr. Mater., 2018, vol. 150, pp. 22-25.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 51701163, 51701166, 51801184), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JQ-410, 2018JM5145), and Innovation Team in key areas of Shaanxi Province (2016KCT-30).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yusheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 27, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Du, Y., Huo, W. et al. Microstructure and Mechanical Properties of Zamak 3 Alloy Subjected to Sliding Friction Treatment. Metall Mater Trans A 50, 5888–5895 (2019). https://doi.org/10.1007/s11661-019-05466-9

Download citation