The Role of Retained Austenite Stability on Low-Temperature Mechanical Behaviors of a Quenching and Partitioning Steel

Abstract

Low-temperature deformation and fracture behaviors are studied for a quenching and partitioning (Q&P) steel by interrupted tensile tests and X-ray diffraction (XRD). The austenite stability decreases significantly from 298 K to 223 K, while further cooling to 77 K does not cause greater instability. The yielding, work hardening, and fracture behaviors are found to change under the influence of austenite stability at low temperatures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reference

  1. 1.

    H.L. Yi, L. Sun, and X.C. Xiong: Mater. Sci. Technol. (United Kingdom), 2018, vol. 34, pp. 1112–7.

    CAS  Article  Google Scholar 

  2. 2.

    X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 13031–40.

    CAS  Article  Google Scholar 

  3. 3.

    J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.M. Lee, Y.K. Lee, S.I. Lee, and B. Hwang: Acta Mater., 2017, vol. 122, pp. 199–206.

    CAS  Article  Google Scholar 

  4. 4.

    X. Zhu, K. Zhang, W. Li, and X. Jin: Mater. Sci. Eng. A, 2016, vol. 658, pp. 400–8.

    CAS  Article  Google Scholar 

  5. 5.

    Q. Hao, S. Qin, Y. Liu, X. Zuo, N. Chen, and Y. Rong: Mater. Sci. Eng. A, 2016, vol. 671, pp. 135–46.

    CAS  Article  Google Scholar 

  6. 6.

    Y.J. Li, J. Kang, W.N. Zhang, D. Liu, X.H. Wang, G. Yuan, R.D.K. Misra, and G.D. Wang: Mater. Sci. Eng. A, 2018, vol. 710, pp. 181–91.

    CAS  Article  Google Scholar 

  7. 7.

    Z. Wang, Z.C. Luo, and M.X. Huang: Materialia, 2018, vol. 4, pp. 260–7.

    Article  Google Scholar 

  8. 8.

    K.H. Kwon, I.C. Yi, Y. Ha, K.K. Um, J.K. Choi, K. Hono, K. Oh-Ishi, and N.J. Kim: Scr. Mater., 2013, vol. 69, pp. 420–3.

    CAS  Article  Google Scholar 

  9. 9.

    T. Sirithanakorn, M. Tanaka, and K. Higashida: Mater. Sci. Eng. A, 2014, vol. 611, pp. 383–7.

    CAS  Article  Google Scholar 

  10. 10.

    L. Wang and J.G. Speer: Metallogr. Microstruct. Anal., 2013, vol. 2, pp. 268–81.

    Article  Google Scholar 

  11. 11.

    I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53.

    CAS  Article  Google Scholar 

  12. 12.

    F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter: Int. J. Plast., 2000, vol. 16, pp. 723–48.

    CAS  Article  Google Scholar 

  13. 13.

    H.I. McHenry: The Properties of Austenitic Stainless Steel At Cryogenic Temperatures. Springer, New York, 1983.

    Google Scholar 

  14. 14.

    S. Chatterjee and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2013, vol. 23, pp. 1101–4.

    Article  Google Scholar 

  15. 15.

    Z. Xiong, P.J. Jacques, A. Perlade, and T. Pardoen: Scr. Mater., 2018, vol. 157, pp. 6–9.

    CAS  Article  Google Scholar 

  16. 16.

    L. Liu, B.B. He, G.J. Cheng, H.W. Yen, and M.X. Huang: Scr. Mater., 2018, vol. 150, pp. 1–6.

    CAS  Article  Google Scholar 

  17. 17.

    ASTM, Standard Practice for X-Ray Determination of Retained Austenite in Steels with Near Random Crystallographic Orientation, ASTM Standards E 975-03, 1980.

  18. 18.

    G.K. Tirumalasetty, M.A. Van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, and H.W. Zandbergen: Acta Mater., 2012, vol. 60, pp. 1311–21.

    CAS  Article  Google Scholar 

  19. 19.

    B. Verlinden, P. Bocher, E. Girault, and E. Aernoudt: Scr. Mater., 2001, vol. 45, pp. 909–16.

    CAS  Article  Google Scholar 

  20. 20.

    M.-M. Wang, J.-C. Hell, and C.C. Tasan: Scr. Mater., 2017, vol. 138, pp. 1–5.

    CAS  Article  Google Scholar 

  21. 21.

    X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang: Scr. Mater., 2013, vol. 68, pp. 321–4.

    CAS  Article  Google Scholar 

  22. 22.

    P.J. Jacques, F. Delannay, and J. Ladrière: Metall. Mater. Trans. A 2001, vol. 32, pp. 2759–68.

    CAS  Article  Google Scholar 

  23. 23.

    Y. Tomita and K. Okabayashi: Metall. Trans. A, 1983, vol. 14, pp. 2387–93.

    Article  Google Scholar 

  24. 24.

    F. Yang, H. Luo, E. Pu, S. Zhang, and H. Dong: Int. J. Plast., 2018, vol. 103, pp. 188–202.

    CAS  Article  Google Scholar 

  25. 25.

    J. Min, L.G. Hector, L. Zhang, L. Sun, J.E. Carsley, and J. Lin: Mater. Des., 2016, vol. 95, pp. 370–86.

    CAS  Article  Google Scholar 

  26. 26.

    L.P. Kubin and Y. Estrin: J. Phys. III, 1991, vol. 1, pp. 929–43.

    CAS  Google Scholar 

  27. 27.

    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: Science., 2014, vol. 345, pp. 1153–8.

    CAS  Article  Google Scholar 

  28. 28.

    M. Kuzmina, D. Ponge, and D. Raabe: Acta Mater., 2015, vol. 86, pp. 182–92.

    CAS  Article  Google Scholar 

  29. 29.

    J.W. Morris, Jr.: ISIJ Int., 2011, vol. 51, pp. 1569–75.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

M.X. Huang acknowledges the financial support from the National Natural Science Foundation of China (No. U1764252, U1560204), Research Grants Council of Hong Kong (No. 17255016, 17203014), and National Key Research and Development Project of China (No.2017YFB0304401). The authors also acknowledge Dr. Rendong Liu and Dr. Xu Wang of Ansteel for providing the materials.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. X. Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 14, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Huang, M.X. The Role of Retained Austenite Stability on Low-Temperature Mechanical Behaviors of a Quenching and Partitioning Steel. Metall Mater Trans A 50, 5650–5655 (2019). https://doi.org/10.1007/s11661-019-05465-w

Download citation