Scandium Effect on Undercooling and Dendrite Morphology of Al-4.5 Wt Pct Cu Droplets

A Correction to this article was published on 31 January 2020

This article has been updated

Abstract

This paper reports on the undercooling and growth morphology of Al-4.5 wt pct Cu and Al-4.5 wt pct Cu-0.4 wt pct Sc with a focus on the effect of Sc addition. It is found that the addition of Sc reduces the undercoolings of both primary phase and eutectic. In addition, the morphology of the Al-4.5 wt pct Cu-0.4 wt pct Sc dendrites is less favored in the 〈111〉 direction at similar undercoolings as with Al-4.5 wt pct Cu. The development of solidification continuous cooling transformation diagrams that relate the solidification paths to the inherent solidification microstructures is also introduced. The solidification continuous cooling transformation diagrams are obtained based on the measurement of phase fractions of a solidified microstructure. The quantitative data are combined with well-established solidification models and phase diagrams to yield undercooling temperatures of individual phases. The thermal history and undercooling of different phases in the solidified alloy are estimated for a wide range of cooling rates (from 10−2 to 104 K/s). It is found that a minimum cooling rate of about 1 K/s is required to avoid the nucleation of the detrimental intermetallic, W-phase in hypoeutectic Al-Cu-Sc.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Change history

  • 31 January 2020

    In the original article the Acknowledgments are incomplete. Following is the corrected text:

  • 31 January 2020

    In the original article the Acknowledgments are incomplete. Following is the corrected text:

References

  1. 1.

    J.R. Davis (ed.): ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International, Clevelandc 1993.

    Google Scholar 

  2. 2.

    P. Haasen: Physical Metallurgy, 3rd ed., Cambridge University Press, Cambridge, UK, 1996.

    Google Scholar 

  3. 3.

    Z.C. Sims, O.R. Rios, D. Weiss, P.E.A Turchi, A. Perron, J.R.I. Lee, T.T. Li, J.A. Hammons, M. Bagge-Hansen, T.M. Willey, K. An, Y. Chen, A.H. King and S.K. McCall: Mater. Horiz., 2017, vol. 4 (6), pp. 1070-1078.

    CAS  Article  Google Scholar 

  4. 4.

    N. Blake and M.A. Hopkins: J. Mater. Sci., 1985, vol. 20 (8), pp. 2861-2867.

    CAS  Article  Google Scholar 

  5. 5.

    D.N. Seidman, E.A. Marquis and D.C. Dunand: Acta Mater., 2002, vol. 50 (16), pp. 4021-4035.

    CAS  Article  Google Scholar 

  6. 6.

    L.S. Toporova, D.G. Eskin, M.L. Kharakterova and T.V. Dobatkina: Advanced aluminum alloys containing scandium: structure and properties, Gordon & Breach, Amsterdam, 1998.

    Google Scholar 

  7. 7.

    A.-A. Bogno, J. Valloton, H. Henein, D.G. Ivey, A.J. Locock, and M. Gallerneault: Can. Metall. Quart., 2018, vol. 57 (2), pp. 148-159.

    CAS  Article  Google Scholar 

  8. 8.

    J. Røyset and N. Ryum: Int. Mater. Rev., 2005, vol. 50 (1), pp. 19-44.

    Article  Google Scholar 

  9. 9.

    J. Røyset: Metall. Sci. Technol., 2007, vol. 25 (2), pp. 11-21.

    Google Scholar 

  10. 10.

    M.L. Kharakterova and T.V. Dobatkina: Russ. Metal., 1988, vol. 6, pp. 175-178.

    Google Scholar 

  11. 11.

    M.L. Kharakterova: Russ. Metal., 1991, vol. 4, pp. 191-194.

    Google Scholar 

  12. 12.

    H. Bo, L.B. Liu and Z.P. Jin: J. Alloy. Compd., 2010, vol. 490 (1-2), pp. 318-325.

    CAS  Article  Google Scholar 

  13. 13.

    S. Riva, K.V. Yusenko, N.P. Lavery, D.J. Jarvis and S.G.R. Brown: Int. Mater. Rev., 2016, vol. 61 (3), pp. 203-228.

    CAS  Article  Google Scholar 

  14. 14.

    J.O. Andersson, T. Helander, L. Höglund, S. Pingfang and B. Sundman: Calphad. 2002, vol. 26 (2), pp. 273-312.

    CAS  Article  Google Scholar 

  15. 15.

    A.-A. Bogno, J. Valloton, H. Henein, M. Gallerneault, and D.M. Herlach: Proc. 3rd Pan Am. Mater. Congress, Berlin, Springer, 2017, pp. 355–63.

  16. 16.

    H. Henein: Mater. Sci. Eng., 2002, vol. A326, pp. 92-100.

    Article  Google Scholar 

  17. 17.

    J. Wiskel, H. Henein and E. Maire: Can. Metall. Quart., 2002, vol. 41 (1), pp. 97-110.

    CAS  Article  Google Scholar 

  18. 18.

    J. Wiskel, K. Navel, H. Henein and E. Maire: Can. Metall. Quart., 2002, vol. 41 (2), pp. 193-204.

    CAS  Article  Google Scholar 

  19. 19.

    A.-A. Bogno, P.D. Khatibi, H. Henein and Ch.-A. Gandin: Metall. Mater. Trans. A, 2016, vol. 47 (9), pp. 4606-4615.

    Article  Google Scholar 

  20. 20.

    R. A. Young (ed.): The Rietveld Method. International Union of Crystallography/Oxford University Press, Oxford, UK, 1993.

    Google Scholar 

  21. 21.

    D. M. Herlach and D. M. Matson (eds.) (2012) Solidification of Containerless Undercooled Melts. Wiley, Weinheim, pp. 9-16.

    Google Scholar 

  22. 22.

    J. Chen, U. Dahlborg, C.M. Bao, M. Calvo-Dahlborg, and H. Henein: Metall. Mater. Trans. B, 2011, vol. 42 (3), pp. 557-567.

    Article  Google Scholar 

  23. 23.

    M. Bedel, G. Reinhart, A.-A. Bogno, Ch.-A. Gandin, S. Jacomet, E. Boller, H. Nguyen-Thi and H. Henein: Acta Mater., 2015, vol. 89, pp. 234-246.

    CAS  Article  Google Scholar 

  24. 24.

    D. Eskin, Q. Du, D. Ruvalcaba and L. Katgerman: Mater. Sci. Eng., 2005, 405(1-2), 1-10.

    Article  Google Scholar 

  25. 25.

    A.M. Mullis, L. Farrell, R.F. Cochrane and N.J. Adkins: Metall. Mater. Trans. B, 2013, vol. 44 (4), pp. 992-999.

    Article  Google Scholar 

  26. 26.

    J. A. Dantzig and M. Rappaz: Solidification, EPFL Press, Lausanne, 2009.

    Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the European Space Agency (ESA) within the frame of the NEQUISOL project is gratefully acknowledged. The authors are grateful to the Canadian Nuclear Laboratories (CNL) and the European Synchrotron Radiation Facility (ESRF) for beam time and expert support during the measurement campaigns. The assistance of Daniel Auras with morphology analysis is appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Valloton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 22, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valloton, J., Bogno, AA., Henein, H. et al. Scandium Effect on Undercooling and Dendrite Morphology of Al-4.5 Wt Pct Cu Droplets. Metall Mater Trans A 50, 5700–5706 (2019). https://doi.org/10.1007/s11661-019-05463-y

Download citation