Skip to main content
Log in

Austenite Grain Growth in High Manganese Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain growth in high-manganese steel (HMS) was studied at high temperatures (1273 K to 1473 K). Grain growth was found to be two orders of magnitude slower than that in a commercial low-Mn steel, as indexed by average experimentally determined mobilities. Electron backscatter diffraction maps of grain boundaries revealed the presence of numerous special boundaries in the global boundary network. Most of the special boundaries appeared in the form of Σ3-type coincident site lattice boundaries (annealing twins). Interaction of high-angle grain boundaries with annealing twins results in the formation of low-energy–low-mobility boundary segments, which were considered to be the reason for slow grain growth in HMS. A first-order model of grain growth kinetics in the presence of annealing twins was shown to be in reasonable accord with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Kriangyut: RWTH, Aachen, Ph.D. Thesis, 2008.

  2. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141–68.

    Article  CAS  Google Scholar 

  3. C. Scott, S. Allain, M. Faral, N. Guelton: La Rev. Métallurgie-CIT, 2006, vol. 103, pp. 293–02.

    Article  CAS  Google Scholar 

  4. B.C. De Cooman, K. Chin, and J. Kim: New Trends and Developments in Automotive System Engineering, M. Chiaberge, ed., InTech, Rijeka, 2011, pp. 101–28.

  5. M. Bhattacharyya, B. Langelier, G. Purdy, H.S. Zurob: Metall Mater Trans A., 2018, 50, 3674-3692.

    Google Scholar 

  6. R. L. Fullman, J. C. Fisher: J. Appl. Phys., 1951, vol. 22, pp. 1350–55.

    Article  CAS  Google Scholar 

  7. H. Gleiter: Acta Met, 1969, vol. 17, pp. 1421-28.

    Article  CAS  Google Scholar 

  8. J. E. Burke: Trans. AIME, 1950, vol. 188, pp. 1324-28.

    CAS  Google Scholar 

  9. G. Gindraux, W. Form: J. Inst. Metals.,1973, vol. 101, pp. 85-9.

    CAS  Google Scholar 

  10. S. Carpenter, H.C.H. Tamura: Proc. R. Soc. Lond. A., 1926, vol. 113, pp. 161–82.

    Article  CAS  Google Scholar 

  11. P.J. Goodhew: Met. Sci., 1979, vol. 13, pp. 108–12.

    Article  CAS  Google Scholar 

  12. M.A. Meyers, L.E. Murr: Acta Materialia., 1978, vol. 26, pp. 951–62.

    Article  CAS  Google Scholar 

  13. L.E. Murr: J. Appl. Phys., 1968, vol. 39, pp. 5557–66.

    Article  CAS  Google Scholar 

  14. B. Lin, Y. Jin, C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, M. Bernacki, N. Bozzolo, A.D. Rollett, G.S. Rohrer: Acta Materialia., 2015, vol. 99, pp. 63–68.

    Article  CAS  Google Scholar 

  15. N. Dash, S. Brown (1963) Acta Metall J, 11, 1067–1075.

    Article  CAS  Google Scholar 

  16. S.L. Thomas, A.H. King, D.J. Srolovitz: Acta Materialia., 2016, vol. 113, pp. 301–10.

    Article  CAS  Google Scholar 

  17. E.A. Holm, S.M. Foiles: Science.,2010, vol. 328, pp. 1138–41.

    Article  CAS  Google Scholar 

  18. X. Liang, X. Wang, H.S. Zurob: Mater. Charact., 2009, vol. 60, pp. 1224–31.

    Article  CAS  Google Scholar 

  19. D. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  20. J.E. Burke, D. Turnbull: Progress in metal physics, 1952, vol. 3, pp. 220-92.

    Article  CAS  Google Scholar 

  21. J.E. Burke: Trans. AIME, 1949, vol. 180, pp. 73-91.

    Google Scholar 

  22. C.S. Smith: Metal Interfaces, ASM, Cleveland, OH, 1952, pp. 65.

    Google Scholar 

  23. P. Feltham: Acta Metall.,1957, vol. 5, pp. 97-105.

    Article  CAS  Google Scholar 

  24. I.M. Lifshitz and V.V. Slyozov: Zh. Eksp. Teor. Fiz., 1958, vol. 35, pp. 479-92.

    Google Scholar 

  25. G.W. Greenwood: Acta Metall., 1956, vol. 4, pp. 243-48.

    Article  CAS  Google Scholar 

  26. M. Hillert: Acta Metall., 1965, vol. 13, pp. 227-38.

    Article  CAS  Google Scholar 

  27. K. Furumai, X. Wang, H. Zurob, A. Phillion: ISIJ Int., 2019, vol. 59, pp. 1064 -71.

    Article  CAS  Google Scholar 

  28. D. Turnbull: JOM, 1951, vol. 3, pp. 661–65.

    Article  CAS  Google Scholar 

  29. T. Zhou: McMaster University, Ph.D. Thesis, 2010.

  30. M. Winning, A.D. Rollett, G. Gottstein, D.J. Srolovitz: Philos. Mag., 2010,vol. 90, pp. 3107–28.

    Article  CAS  Google Scholar 

  31. M. Hillert, B.O. Sundman: Acta Metall., 1976, vol.24, pp. 731–43.

    Article  CAS  Google Scholar 

  32. D. Drabble: University of Canterbury, Ph.D. Thesis, 2010.

  33. P. Lejcek, Grain Boundary Segregation in Metals, Vol. 136, Springer, New York, 2010.

    Book  Google Scholar 

  34. G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. CRC Series in Materials Science and Technology, Boca Raton, 2009.

    Book  Google Scholar 

  35. C. Meyers, M.A., McCowan: Interface Migr. Control Microstruct. Proc. an Int. Symp. Held Conjunction with ASM’s Met. Congr. TMS/A, 1984, pp. 99–23.

  36. V. Randle: Mater. Sci. Technol., 2010, vol. 26, pp. 253–61.

    Article  CAS  Google Scholar 

  37. V. Randle: Acta Materialia., 2004, vol. 52, pp. 4067–81.

    Article  CAS  Google Scholar 

  38. T.H. Chuang, C.H. Tsai, H.C. Wang, C.C. Chang, C.H. Chuang, J. DerLee, H.H. Tsai: J. Electron. Mater., 2012, vol. 41, pp. 3215–22.

    Article  Google Scholar 

  39. J. von Neumann: Metal Interfaces, ASM, Cleveland, 1952, pp. 108-10.

    Google Scholar 

  40. W. W. Mullins: Journal of Applied Physics, 1956, vol. 27, pp. 900-04.

    Article  Google Scholar 

  41. M.P. Anderson, D.J. Srolovitz, G.S. Grest and P.S. Sahni: Acta Metall., 1984, vol. 32, pp. 783-91.

    Article  CAS  Google Scholar 

  42. D.J. Srolovitz, M.P. Anderson, P.S. Sahni and G. S. Grest: Acta Metall., 1984, vol. 32, pp. 793-02.

    Article  CAS  Google Scholar 

  43. R. D. MacPherson, D. J. Srolovitz: Nature., 2007, vol. 446, pp. 1053-55.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant No. RGPIN3978-15). MB thanks Mr. J. Garrett for vacuum sealing the samples and Mr. C. Butcher for his guidance with EBSD. In addition, access to the microscope facility in the Canadian Centre for Electron Microscopy (a national facility funded by NSERC and other government agencies) is gratefully acknowledged.

Conflict of interest

No potential conflict of interest was reported by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumanti Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 16, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, M., Brechet, Y., Purdy, G.R. et al. Austenite Grain Growth in High Manganese Steels. Metall Mater Trans A 50, 5760–5766 (2019). https://doi.org/10.1007/s11661-019-05460-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05460-1

Navigation