Fatigue Life Improvement in Lean Duplex Stainless Steel by Peening Treatments

Abstract

The present work studies the effects of shot peening (SP) and laser shock peening without coating (LSPwC) on the low-cycle fatigue life of the lean duplex stainless steel LDX 2101. LSPwC with two pulse densities, 2500 and 5000 pulse/cm2, were considered. To analyze the changes induced by each peening treatment, roughness, residual stress, hardness, quantitative phase analysis, qualitative surface chemical composition and dislocation microstructure were evaluated. This article shows that SP and LSPwC induce in the surface; beneficial compressive residual stresses, increase of hardness and roughness and in the austenite phase a pronounced work hardening. The strong barrier of this hardened austenite phase to microcrack growth can explain the improvement in the fatigue life of LDX 2101 with peening treatments. Moreover, the highest fatigue life is achieved for the LSPwC-treated material with 5000 pulse/cm2 because of the presence of deformation twins in the autenitic phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    L. Wagner, M. Mhaede, M. Wollmann, I. Altenberger, and Y. Sano: Int. J. Struct. Integr., 2011, vol. 2, pp. 185–99.

    Google Scholar 

  2. 2.

    W.Z. Zhuang and G.R. Halford: Int. J. Fatigue, 2001, vol. 23, pp. S31–7.

    Google Scholar 

  3. 3.

    R.C. McClung: Fatigue Fract. Eng. Mater. Struct., 2007, vol. 30, pp. 173–205.

    Google Scholar 

  4. 4.

    I. Altenberger, R.K. Nalla, Y. Sano, L. Wagner, and R.O. Ritchie: Int. J. Fatigue, 2012, vol. 44, pp. 292–302.

    CAS  Google Scholar 

  5. 5.

    J. Cao, J. Zhang, Y. Hua, Z. Rong, R. Chen, and Y. Ye: J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, vol. 32, pp. 1186–92.

  6. 6.

    I. Nikitin and I. Altenberger: Mater. Sci. Eng. A, 2007, vol. 465, pp. 176–82.

    Google Scholar 

  7. 7.

    Volker Schulze: Modern Mechanical Surface Treatment. States, Stability, Effects., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006.

    Google Scholar 

  8. 8.

    Y. Zhang, J. Lu, and K. Luo: Laser Shock Processing of FCC Metals, Springer, Berlin, 2013.

    Google Scholar 

  9. 9.

    A.K. Gujba and M. Medraj: Materials (Basel)., 2014, vol. 7, pp. 7925–74.

    Google Scholar 

  10. 10.

    C.S. Montross, T. Wei, L. Ye, G. Clark, and Y. Mai: Int. J. Fatigue, 2002, vol. 24, pp. 1021–36.

    CAS  Google Scholar 

  11. 11.

    A. Clauer: in 4th International Conference on Laser Peening, Madrid, Spain, 2013.

  12. 12.

    M.J. Leap, J. Rankin, J. Harrison, L. Hackel, J. Nemeth, and J. Candela: Int. J. Fatigue, 2011, vol. 33, pp. 788–99.

    Google Scholar 

  13. 13.

    R.D. Tenaglia and D.F. Lahrman: AMPTIAC Q., 2003, vol. 7, pp. 3–7.

    CAS  Google Scholar 

  14. 14.

    Y. Sano: J. Laser Micro/Nanoengineering, 2006, vol. 1, pp. 161–6.

    CAS  Google Scholar 

  15. 15.

    D. Karthik and S. Swaroop: Mater. Manuf. Process., 2017, vol. 32, pp. 1565–72.

    CAS  Google Scholar 

  16. 16.

    R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, and R.O. Ritchie: Mater. Sci. Eng. A, 2003, vol. 355, pp. 216–30.

    Google Scholar 

  17. 17.

    C.A. Vázquez Jiménez, G. Gómez Rosas, C. Rubio González, V. Granados Alejo, and S. Hereñú: Opt. Laser Technol., 2017, vol. 97, pp. 308–15.

  18. 18.

    L. Spadaro, G. Gomez-Rosas, C. Rubio-González, R. Bolmaro, A. Chavez-Chavez, and S. Hereñú: Opt. Laser Technol., 2017, vol. 93, pp. 208–15.

    CAS  Google Scholar 

  19. 19.

    C. Correa, L. Ruiz De Lara, M. Díaz, A. Gil-Santos, J.A. Porro, and J.L. Ocaña: Int. J. Fatigue, 2015, vol. 79, pp. 1–9.

    CAS  Google Scholar 

  20. 20.

    D. Karthik and S. Swaroop: Surf. Coatings Technol., 2016, vol. 291, pp. 161–71.

    CAS  Google Scholar 

  21. 21.

    A.S. Gill, A. Telang, and V.K. Vasudevan: J. Mater. Process. Technol., 2015, vol. 225, pp. 463–72.

    CAS  Google Scholar 

  22. 22.

    M. Obata, Y. Sano, N. Mukai, M. Yoda, S. Shima, and M. Kanno: in The Seventh International Conference on Shot Peening, 1999, pp. 387–94.

  23. 23.

    P. Peyre, C. Carboni, A. Sollier, L. Berthe, C. Richard, E. de Los Rios, and R. Fabbro: in International Symposium on High-Power Laser Ablation, vol. 4760, 2002, pp. 654–66.

  24. 24.

    E. Alfonsson: in 8th Duplex Stainless Steels conference Proceedings, J. Charles, ed., Beaune, France, 2010, pp. 787–93.

  25. 25.

    M. Benson: acom, 2005, https://files.outokumpu.com/-/media/files/advance/utilization-of-the-material-strength-for-lower-weight-and-cost-with-ldx-2101-2005-3.pdf.

  26. 26.

    S. Baldo: Università degli Dtudi di Padova, 2010, http://paduaresearch.cab.unipd.it/3398/1/Baldo.pdf.

  27. 27.

    C. Rubio-González, C. Felix-Martinez, G. Gomez-Rosas, J.L. Ocaña, M. Morales, and J.S. Porro: Mater. Sci. Eng. A, 2011, vol. 528, pp. 914–9.

    Google Scholar 

  28. 28.

    V. Granados-Alejo, C. Rubio-González, C.A. Vázquez-Jiménez, J.A. Banderas, and G. Gómez-Rosas: Opt. Laser Technol., 2018, vol. 101, pp. 531–44.

    CAS  Google Scholar 

  29. 29.

    C.A. Vázquez Jiménez, R. Strubbia, G. Gómez Rosas, C. Rubio González, and S. Hereñú: Opt. Laser Technol., 2019, vol. 111, pp. 789–96.

  30. 30.

    UNI EN ISO 4288:2000, Geometrical Product Specifications (GPS)–Surface texture: Profile Method–Rules and Procedures for the Assessment of Surface Texture, UNI, Milano, Italy, 2000.

  31. 31.

    ASTM 2002: Annual Book of ASTM Standards, No. E837-13a, West Conshohocken, PA, 2013.

  32. 32.

    L. Ruiz de Lara de Luis: Universidad Politécnica de Madrid, 2015, https://dialnet.unirioja.es/servlet/tesis?codigo=114690.

  33. 33.

    H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    CAS  Google Scholar 

  34. 34.

    L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Schultz, and J.W. Richardson: J. Appl. Phys., 1997, vol. 81, pp. 594–600.

    CAS  Google Scholar 

  35. 35.

    L. Lutterotti: Maud (Material Analysis Using Diffraction), 1997, http://maud.radiographema.com.

  36. 36.

    N.C. Popa: J. Appl. Crystallogr., 1998, vol. 31, pp. 176–80.

    CAS  Google Scholar 

  37. 37.

    N.C. Popa: J. Appl. Crystallogr., 1992, vol. 25, pp. 611–6.

    Google Scholar 

  38. 38.

    P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Béranger, and C. Lemaitre: Mater. Sci. Eng. A, 2000, vol. 280, pp. 294–302.

    Google Scholar 

  39. 39.

    Q. Liu, K. Ding, L. Ye, C. Rey, S.A. Barter, P.K. Sharp, and G. Clark: in Struct. Integr. Fract. Int. Conf., 2004, pp. 235–40.

  40. 40.

    H. Luong and M.R. Hill: Mater. Sci. Eng. A, 2010, vol. 527, pp. 699–707.

    Google Scholar 

  41. 41.

    F.Z. Dai, Y.K. Zhang, J.Z. Lu, D.P. Wen, X.J. Hua, X.D. Ren, and J.Z. Zhou: Surf. Coat. Technol., 2015, vol. 261, pp. 35–40.

    CAS  Google Scholar 

  42. 42.

    L. Petan, J.L. Ocaña, and J. Grum: J. Mech. Eng., 2016, vol. 62, pp. 291–8.

    Google Scholar 

  43. 43.

    B.M. Tossey: The Ohio State University, 2011, https://etd.ohiolink.edu/!etd.send_file?accession=osu1306261300&disposition=attachment.

  44. 44.

    T. Hahn, ed.: International Tables for Crystallography, Volume A: Space-Group Symmetry, vol. A, 5th ed., Springer, Dordrecht, 2002.

  45. 45.

    R. Strubbia, S. Hereñú, M.C. Marinelli, and I. Alvarez-Armas: Mater. Sci. Eng. A, 2016, vol. 659, pp. 47–54.

    CAS  Google Scholar 

  46. 46.

    M. Chen, H. Liu, L. Wang, Z. Xu, V. Ji, and C. Jiang: Vacuum, 2018, vol. 153, pp. 145–53.

    CAS  Google Scholar 

  47. 47.

    M.M. Nowell, S.I. Wright, and J.O. Carpenter: in Materials Science and Technology 2009 Conference and Exhibition, 2009, pp. 933–43.

  48. 48.

    M. Chen, H. Liu, L. Wang, C. Wang, K. Zhu, Z. Xu, C. Jiang, and V. Ji: Surf. Coatings Technol., 2018, vol. 344, pp. 132–40.

    CAS  Google Scholar 

  49. 49.

    P.S. Prevéy, M.J. Shepard, and P.R. Smith: in Proceedings of 6th National Turbine Engine High Cycle Fatigue (HCF) Conference, 2001.

  50. 50.

    L. Wagner: Mater. Sci. Eng. A, 1999, vol. 263, pp. 210–6.

    Google Scholar 

  51. 51.

    E. Maawad, H.G. Brokmeier, L. Wagner, Y. Sano, and C. Genzel: Surf. Coatings Technol., 2011, vol. 205, pp. 3644–50.

    CAS  Google Scholar 

  52. 52.

    D. Karthik, S. Kalainathan, and S. Swaroop: Surf. Coatings Technol., 2015, vol. 278, pp. 138–45.

    CAS  Google Scholar 

  53. 53.

    E. Castañeda, C. Rubio-Gonzalez, A. Chavez-Chavez, and G. Gomez-Rosas: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2521–5.

    Google Scholar 

  54. 54.

    L.E. Murr: in Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1981, pp. 607–73.

  55. 55.

    R. Strubbia, S. Hereñú, M.C. Marinelli, and I. Alvarez-Armas: Int. J. Fatigue, 2012, vol. 41, pp. 90–4.

    CAS  Google Scholar 

  56. 56.

    R. Strubbia, M. Sennour, and S. Hereñú: Fatigue Fract. Eng. Mater. Struct., 2018, vol. 41, pp. 473–82.

    CAS  Google Scholar 

  57. 57.

    H. Mughrabi : Dislocations Prop. real Mater., 1985, vol. 323, pp. 244–61.

    Google Scholar 

  58. 58.

    K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R, 2009, vol. R65, pp. 39–104.

    CAS  Google Scholar 

  59. 59.

    Y. He, K. Li, I.S. Cho, C.S. Lee, I.G. Park, J. Song, C.-W. Yang, J.-H. Lee, and K. Shin: Appl. Microsc., 2015, vol. 45, pp. 155–69.

    Google Scholar 

  60. 60.

    J.J. Moverare and M. Ode: Mater. Sci. Eng. A, 2002, vol. 337, pp. 25–38.

    Google Scholar 

  61. 61.

    J. Johansson, M. Oden, and X.-H. Zeng: Acta Mater., 1999, vol. 47, pp. 2669–84.

    CAS  Google Scholar 

  62. 62.

    A. Ciuffini, S. Barella, L. Peral-Martínez, C. Mapelli, and I. Fernández-Pariente: Materials (Basel)., 2018, vol. 11, 1038.

    Google Scholar 

  63. 63.

    Q. Feng, C. Jiang, Z. Xu, L. Xie, and V. Ji: Surf. Coat. Technol., 2013, vol. 226, pp. 140–4.

    CAS  Google Scholar 

  64. 64.

    J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    CAS  Google Scholar 

  65. 65.

    A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, and S. Tarafder: Mater. Sci. Eng. A, 2008, vol. 486, pp. 283–6.

    Google Scholar 

  66. 66.

    P.J. Ferreira, J.B. Vander-Sande, M.A. Fortes, and A. Kyrolainen: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3091–3101.

    CAS  Google Scholar 

  67. 67.

    A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, and J. Lu: Acta Mater., 2011, vol. 59, pp. 3697–709.

    CAS  Google Scholar 

  68. 68.

    P. Peyre, R. Fabbro, P. Merrien, and H.P. Lieurade: Mater. Sci. Eng. A, 1996, vol. 210, pp. 102–13.

    Google Scholar 

  69. 69.

    A.H. Clauer, J.K. Lee, R.A. Brockman, W.R. Braisted, S.A. Noll, and A. Gilat: in Fifth National Turbine Engine High Cycle Fatigue Conference, 2000, pp. 30–39.

  70. 70.

    M. Kumagai, K. Akita, M. Imafuku, and S. Ohya: Mater. Sci. Eng. A, 2014, vol. 608, pp. 21–24.

    CAS  Google Scholar 

  71. 71.

    J.J. Roa, G. Fargas, E. Jiménez-Piqué, and A. Mateo: Mater. Sci. Eng. A, 2014, vol. 597, pp. 232–6.

    CAS  Google Scholar 

  72. 72.

    P. Bowen and C.A. Hippsley: Acta Metall., 1988, vol. 36, pp. 425–39.

    CAS  Google Scholar 

  73. 73.

    A.G. Pineau and R.M. Pelloux: Metall. Trans., 1974, vol. 5, pp. 1103–12.

    CAS  Google Scholar 

  74. 74.

    C. Ye, S. Suslov, B.J. Kim, E. A. Stach, and G.J. Cheng: Acta Mater., 2011, vol. 59, pp. 1014–25.

    CAS  Google Scholar 

  75. 75.

    R. Lillbacka, G. Chai, M. Ekh, P. Liu, E. Johnson, and K. Runesson: Acta Mater., 2007, vol. 55, pp. 5359–68.

    CAS  Google Scholar 

  76. 76.

    J. Stolarz and J. Foct: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 501–5.

    Google Scholar 

  77. 77.

    N.A. Koneva, L.A. Teplyakova, O. V. Sosnin, V. V. Tsellermayer, and V. V. Kovalenko: Russ. Phys. J., 2002, vol. 45, pp. 303–18.

    CAS  Google Scholar 

  78. 78.

    U. Martin, I. Altenberger, B. Scholtes, K. Kremmer, and H. Oettel: Mater. Sci. Eng. A, 1998, vol. 246, pp. 69–80.

    Google Scholar 

  79. 79.

    I. Altenberger, B. Scholtes, U. Martin, and H. Oettel: Mater. Sci. Eng. A, 1999, vol. 264, pp. 1–16.

    Google Scholar 

  80. 80.

    R. Strubbia, S. Hereñú, I. Alvarez-Armas, and U. Krupp: Mater. Sci. Eng. A, 2014, vol. 615, pp. 169–74.

    CAS  Google Scholar 

  81. 81.

    J. Man, M. Petrenec, K. Obrtlík, and J. Polák: Acta Mater., 2004, vol. 52, pp. 5551–61.

    CAS  Google Scholar 

  82. 82.

    M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009.

    Google Scholar 

Download references

Acknowledgments

This work was supported by CONICET (PIP No. 0373 and PUE-IFIR-RD 1691/16) and by the Cooperation Program Conacyt/Mincyt (MX/11/12) between México and Argentina. The authors thank Cym Materiales S.A. for performing the shot-peening treatments (https://cym.com.ar/cym-materiales-sa-colabora-con-ifir-conicet/).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Renata Strubbia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 23, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strubbia, R., Hereñú, S., Gómez-Rosas, G. et al. Fatigue Life Improvement in Lean Duplex Stainless Steel by Peening Treatments. Metall Mater Trans A 50, 5614–5626 (2019). https://doi.org/10.1007/s11661-019-05455-y

Download citation