A Novel Stress Relaxation Modeling for Predicting the Change of Residual Stress During Annealing Heat Treatment


Large tensile residual stresses generated during cold working processes could negatively affect the integrity and geometric accuracy of workpieces. The stress relief annealing is one of the fundamental issues in controlling the deformation of the cold-worked part. A novel residual stress relaxation model was proposed to predict the change of residual stress during the annealing process by considering the dislocation evolution mechanism and the plasticity theory. Copper workpieces were rolled with different rolling ratios and annealed under different heating temperatures and heating times. Hole-drilling experiments were conducted to measure the residual stresses for calibrating the proposed model. The calibrated model was then used to predict the change of residual stresses during annealing heat treatment. The results showed that the initial work hardening of workpieces had a great effect on the residual stress relaxation. Higher initial dislocation density hindered the residual stress relaxation during the annealing process. The results provided guidance on optimizing the annealing conditions for residual stress reduction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    K. Huang, W. Yang and X. Ye, International Journal of Mechanical Sciences, 2018, vol. 135, pp. 43-52.

    Article  Google Scholar 

  2. 2.

    W. Wang, H. Liu, C. Zhu, X. Du and J. Tang, International Journal of Mechanical Sciences, 2019, vol. 151, pp. 263-273.

    Article  Google Scholar 

  3. 3.

    C. Wang, C. Jiang and V. Ji, Journal of Materials Processing Technology, 2017, vol. 240, pp. 98-103.

    CAS  Article  Google Scholar 

  4. 4.

    B. J. Foss, S. Gray, M. C. Hardy, S. Stekovic, D. S. McPhail and B. A. Shollock, Acta Materialia, 2013, vol. 61(7), pp. 2548-2559.

    CAS  Article  Google Scholar 

  5. 5.

    Z. Wang, A. D. Stoica, D. Ma, A. M. Beese, Materials Science and Engineering: A, 2018, vol. 714, pp. 75-83.

    CAS  Article  Google Scholar 

  6. 6.

    J. Epp, H. Surm, T. Hirsch and F. Hoffmann, Journal of Materials Processing Technology, 2011, vol. 211(4), pp. 637-643.

    CAS  Article  Google Scholar 

  7. 7.

    I. Nikitin and M. Besel, Scripta Materialia, 2008, vol. 58(3), pp. 239-242.

    CAS  Article  Google Scholar 

  8. 8.

    V. P. Radchenko, M. N. Saushkin and V. V. Tsvetkov, Journal of Applied Mechanics and Technical Physics, 2016, vol. 57(3), pp. 559-568.

    CAS  Article  Google Scholar 

  9. 9.

    P. Dong, S. Song and J. Zhang, International Journal of Pressure Vessels and Piping, 2014, vol. 122, pp. 6-14.

    Article  Google Scholar 

  10. 10.

    L. A. Godlewski, X. Su, T. M. Pollock and J. E. Allison, Metallurgical and Materials Transactions A, 2013, vol. 44(10), pp. 4809-4818.

    Article  Google Scholar 

  11. 11.

    Z. Trojanová, P. Lukác and K. U. Kainer, Advanced Engineering Materials, 2007, vol. 9(5), pp. 370-374.

    Article  Google Scholar 

  12. 12.

    K. Sherafatnia, G. H. Farrahi and A. H. Mahmoudi, International Journal of Mechanical Sciences, 2018, vol. 137, pp. 171-181.

    Article  Google Scholar 

  13. 13.

    A. Madariaga, J. Aperribay, P. J. Arrazola, J. A. Esnaola, E. Hormaetxe, A. Garay and K. Ostolaza, Journal of Materials Engineering and Performance, 2017, vol. 26(8), pp. 3728-3738.

    CAS  Article  Google Scholar 

  14. 14.

    H. D. Chandler, Materials Science and Engineering: A, 2010, vol. 527(23), pp. 6219-6223.

    Article  Google Scholar 

  15. 15.

    B. Babu and L. E. Lindgren, International Journal of Plasticity, 2013, vol. 50, pp. 94-108.

    CAS  Article  Google Scholar 

  16. 16.

    H. Wang, B. Clausen, L. Capolungo, I. J. Beyerlein, J. Wang and C. N. Tome, International Journal of Plasticity, 2016, vol. 79, pp. 275-292.

    CAS  Article  Google Scholar 

  17. 17.

    D. J. Buchanan, R. John, R. A. Brockman and A. H. Rosenberger, JOM, 2010, vol. 62(1), pp. 75-79.

    CAS  Article  Google Scholar 

  18. 18.

    Y. C. Lin, X. M. Chen, D. X. Wen and M. S. Chen, Computational Materials Science, 2014, vol. 83, pp. 282-289.

    CAS  Article  Google Scholar 

  19. 19.

    F. Roters, D. Raabe and G. Gottstein, Acta Materialia, 2000, vol. 48(17), pp. 4181-4189.

    CAS  Article  Google Scholar 

  20. 20.

    W. Blum, P. Eisenlohr and F. Breutinger, Metallurgical and Materials Transactions A, 2002, vol. 33(2), pp. 291-303.

    CAS  Article  Google Scholar 

  21. 21.

    W. Blum and P. Eisenlohr, Materials Science and Engineering: A, 2009, vol. 510-511, pp. 7-13.

    Article  Google Scholar 

  22. 22.

    P. Eisenlohr and W. Blum, Materials Science and Engineering: A, 2005, vol. 400-401, pp. 175-181.

    Article  Google Scholar 

  23. 23.

    S. Rahimi, M. King and C. Dumont, Materials Science and Engineering: A, 2017, vol. 708, pp. 563-573.

    CAS  Article  Google Scholar 

  24. 24.

    S. D. Antolovich and R.W. Armstrong, Progress in Materials Science, 2014, vol. 59, pp. 1-160.

    Article  Google Scholar 

  25. 25.

    S. Curtze and V. T. Kuokkala, Acta Materialia, 2010, vol. 58, pp. 5129-5141.

    CAS  Article  Google Scholar 

  26. 26.

    H. J. Frost and M. F. Ashby, Deformation mechanism maps: the plasticity and creep of metals and ceramics. (Pergamon, Oxford, 1982).

    Google Scholar 

  27. 27.

    X.G. Fan and H. Yang, International Journal of Plasticity, 2011, vol. 27(11), pp. 1833-1852.

    CAS  Article  Google Scholar 

  28. 28.

    D. Kuhlmann-Wilsdorf, Materials Science and Engineering: A, 1989, vol. 113, pp. 1-41.

    Article  Google Scholar 

  29. 29.

    U. F. Kocks and H. Mecking, Progress in Materials Science, 2003, vol. 48(3), pp. 171-273.

    CAS  Article  Google Scholar 

  30. 30.

    N. Bertin, L. Capolungo and I. J. Beyerlein, International Journal of Plasticity, 2013, vol. 49, pp. 119-144.

    CAS  Article  Google Scholar 

  31. 31.

    G. K. Williamson and R. E. Smallman, Philosopical Magazine, 1956, vol. 1(1), pp. 34-46.

    CAS  Article  Google Scholar 

  32. 32.

    G. K. Williamson and W. H. Hall, Acta Metallurgica, 1953, vol. 1, pp. 22-31.

    CAS  Article  Google Scholar 

  33. 33.

    M. Kazeminezhad, Materials Science and Engineering A, 2008, vol. 486, pp. 202–207.

    Article  Google Scholar 

  34. 34.

    L. Błaż and P. Kwapisiński, Archives of Metallurgy and Materials, 2009, vol. 54(1), pp. 161-170.

    Google Scholar 

Download references


This study was supported by the Science Challenge Project (JCKY2016212A506-0101), the National Natural Science Foundation of China (51605077), the Fundamental Research Funds for the Central Universities (DUT18LAB18), and the Science Fund for Creative Research Groups of NSFC (51621064).

Author information



Corresponding author

Correspondence to Yi-Qi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted Feburary 11, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, Q., Feng, H., Si, LK. et al. A Novel Stress Relaxation Modeling for Predicting the Change of Residual Stress During Annealing Heat Treatment. Metall Mater Trans A 50, 5750–5759 (2019). https://doi.org/10.1007/s11661-019-05454-z

Download citation