On Formation of Abnormally Large Grains in Annealing Prestrained Aluminum Alloy Multiport Extrusion Tubes

Abstract

Abnormally large grains (ALGs) appear after annealing of prestrained multiport extrusion (MPE) tubes, which will significantly degrade the mechanical properties of the tubes. In the present work, the underpinning mechanisms of ALGs’ formation are probed through experiments. MPE tubes made of A3102 alloy are prestrained by roll leveling with different thickness reduction ratios and are then subjected to annealing at 600 °C for different times. Microstructural evolutions during annealing are characterized through electron backscatter diffraction (EBSD), in terms of crystallographic orientation, grain size distribution, grain boundary characters, and residual plastic strain. Uniaxial tension tests are carried out on the annealed tubes to study the effect of annealing on tubes’ strength. The thickness reduction prior to annealing produces heterogeneous deformation in tubes. The hard zones formed near grain boundaries and triple junction (TJs) are responsible for recrystallized nucleation in annealing. The duration of the identified incubation period for grain growth is inversely proportional to the thickness reduction ratio. The strain-free nuclei formed in the incubation period can grow fast into ALGs by means of strain-induced boundary migration. Further grain growth is inhibited by grains’ impingement after the strained grains are exhausted. Grains consumed by the growing ALGs tend to establish special boundary relationships with the ALGs and can turn into island grains. The significant reduction of tubes’ strength after annealing is attributed to the diminishment of grain boundaries caused by the formation of ALGs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. 1.

    J. Zhao, Y.H. Diao, Y.H. Zhao, and Y.N. Zhang: Appl. Therm. Eng., 2014, vol. 65 (1), pp. 209–18.

    Google Scholar 

  2. 2.

    M.M. Guzowski, F.F. Kraft, H.R. McCarhery, and J.C. Noveskey: Proc. Conf. 4th on Vehicle Thermal Management Systems, Wiley-Blackwell, Hoboken, NJ, 1999, pp. 24–27.

  3. 3.

    K. Li, T.X. Zou, D.Y. Li, D. Shu, D. Tang, and Y.H. Peng: J. Mater. Eng. Perform., 2019, https://doi.org/10.1007/s11665-019-04132-w.

    Article  Google Scholar 

  4. 4.

    D. Tang, X. Fan, W. Fang, D. Li, Y. Peng, and H. Wang: Mater. Charact., 2018, vol. 142, pp. 449–57.

    CAS  Article  Google Scholar 

  5. 5.

    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, Amsterdam, 2017, pp. 145–304.

    Google Scholar 

  6. 6.

    P.A. Beck and P.R. Sperry: J. Appl. Phys., 1950, vol. 21 (2), pp. 150–52.

    CAS  Article  Google Scholar 

  7. 7.

    J.B. Koo and D.Y. Yoon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 469–75.

    CAS  Article  Google Scholar 

  8. 8.

    V.M. Miller, A.E. Johnson, C.J. Torbet, and T.M. Pollock: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1566–74.

    Article  Google Scholar 

  9. 9.

    G. He, L. Tan, F. Liu, L. Huang, Z. Huang, and L. Jiang: J. Alloys Compd., 2017, vol. 718, pp. 405–13.

    CAS  Article  Google Scholar 

  10. 10.

    V.S. Tong and T.B. Britton: Acta Mater., 2017, vol. 129, pp. 510–20.

    CAS  Article  Google Scholar 

  11. 11.

    A.D. Rollett, D.J. Srolovitz, and M.P. Anderson: Acta Metall., 1989, vol. 37 (4), pp. 1227–40.

    CAS  Article  Google Scholar 

  12. 12.

    S.G. Kim and B.P. Yong: Acta Mater., 2008, vol. 56 (15), pp. 3739–53.

    CAS  Article  Google Scholar 

  13. 13.

    E.J. Payton, G. Wang, M.J. Mills, and Y. Wang: Acta Mater., 2013, vol. 61 (4), pp. 1316–26.

    CAS  Article  Google Scholar 

  14. 14.

    M. Shirdel, H. Mirzadeh, and M.P. Habibi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5185–93.

    Article  Google Scholar 

  15. 15.

    C.G. Dunn and J.L. Walter: Recrystallization, Grain Growth and Texture, ASM, Metals Park, OH, 1965, p. 461.

    Google Scholar 

  16. 16.

    F. Fang, Y.X. Zhang, X. Lu, Y. Wang, M.F. Lan, G. Yuan, R.D.K. Misra, and G.D. Wang: Scripta Mater., 2018, vol. 147, pp. 33–36.

    CAS  Article  Google Scholar 

  17. 17.

    T. Omori, T. Kusama, S. Kawata, L. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, and R. Kainuma: Science, 2013, vol. 341 (6153), pp. 1500–02.

    CAS  Article  Google Scholar 

  18. 18.

    H.C. Kim, C.G. Kang, M.Y. Huh, and E. Olaf: Scripta Mater., 2007, vol. 57 (4), pp. 325–27.

    CAS  Article  Google Scholar 

  19. 19.

    T.W. Na, H.K. Park, C.S. Park, J.T. Park, and N.M. Hwang: Acta Mater., 2016, vol. 115, pp. 224–29.

    CAS  Article  Google Scholar 

  20. 20.

    A.J. Carpenter: Master’s Thesis, The University of Texas at Austin, Austin, TX, 2011, pp. 33–41.

  21. 21.

    I. Charit and R.S. Mishra: Scripta Mater., 2008, vol. 58 (5), pp. 367–71.

    CAS  Article  Google Scholar 

  22. 22.

    S. Jana, R.S. Mishra, J.A. Baumann, and G. Grant: Mater. Sci. Eng. A, 2010, vol. 528, pp. 189–99.

    Article  Google Scholar 

  23. 23.

    X.H. Fan, D. Tang, W.L. Fang, D.Y. Li, and Y.H. Peng: Mater. Charact., 2016, vol. 118, pp. 468–80.

    CAS  Article  Google Scholar 

  24. 24.

    X.H. Fan: Doctoral Thesis, Shanghai Jiao Tong University, Shanghai, 2017, pp. 36–45.

  25. 25.

    J.J. Salinas and A. Salinas: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2117–25.

    CAS  Article  Google Scholar 

  26. 26.

    M. Sachtleber, Z. Zhao, and D. Raabe: Mater. Sci. Eng. A, 2002, vol. 336 (1), pp. 81–87.

    Article  Google Scholar 

  27. 27.

    F. Bachmann, R. Hielscher, and H. Schaeben: Ultramicroscopy, 2011, vol. 111 (12), pp. 1720–33.

    CAS  Article  Google Scholar 

  28. 28.

    J.B. Koo, D.Y. Yoon, and M.F. Henry: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1489–91.

    CAS  Article  Google Scholar 

  29. 29.

    J. Harase, R. Shimizu, and N. Takahashi: Acta Metall. Mater., 1990, vol. 38 (10), pp. 1849–56.

    CAS  Article  Google Scholar 

  30. 30.

    V. Randle, N. Hansen, and D. Juul Jensen: Philos. Mag. A, 1996, vol. 73 (2), pp. 265–82.

    CAS  Article  Google Scholar 

  31. 31.

    W. Yin, W. Wang, X. Fang, C. Qin, and X. Xing: Mater. Charact., 2015, vol. 107, pp. 134–38.

    CAS  Article  Google Scholar 

  32. 32.

    W.C. Liu, P.P. Zhai, and C.S. Man: Mater. Sci. Eng. A, 2012, vol. 531, pp. 178–81.

    CAS  Article  Google Scholar 

  33. 33.

    K. Kashihara, Y. Takeuchi, and T. Shibayanagi: Mater. Trans., 2010, vol. 51 (4), pp. 607–13.

    CAS  Article  Google Scholar 

  34. 34.

    K. Kashihara, H. Konishi, and T. Shibayanagi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8443–50.

    CAS  Article  Google Scholar 

  35. 35.

    C. Antonione, F. Marino, G. Riontino, and M.C. Tabasso: J. Mater. Sci., 1977, vol. 12 (4), pp. 747–50.

    CAS  Article  Google Scholar 

  36. 36.

    W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, pp. 275–89.

    CAS  Google Scholar 

  37. 37.

    Y. Takayama and J.A. Szpunar: Mater. Trans., 2005, vol. 45 (7), pp. 2316–25.

    Article  Google Scholar 

  38. 38.

    J.J. Salinas and A. Salinas: J. Mater. Eng. Perform., 2015, vol. 24 (5), pp. 2117–25.

    CAS  Article  Google Scholar 

  39. 39.

    S.P. Bellier and R.D. Doherty: Acta Metall., 1977, vol. 25 (5), pp. 521–38.

    CAS  Article  Google Scholar 

  40. 40.

    G. Abrivard, E.P. Busso, S. Forest, and B. Appolaire: Philos. Mag., 2012, vol. 92, pp. 3618–42.

    CAS  Article  Google Scholar 

  41. 41.

    N.A. Pedrazas, T.E. Buchheit, E.A. Holm, and M.T. Eric: Mater. Sci. Eng. A, 2014, vol. 610, pp. 76–84.

    CAS  Article  Google Scholar 

  42. 42.

    V. Randle and A. Brown: Philos. Mag. A, 1988, vol. 58 (5), pp. 717–36.

    CAS  Article  Google Scholar 

  43. 43.

    Z. Li, C. Hou, M. Huang, and C. Ouyang: Comput. Mater. Sci., 2009, vol. 46 (4), pp. 1124–34.

    CAS  Article  Google Scholar 

  44. 44.

    H. Lim, M.G. Lee, J.H. Kim, B.L. Adams, and R.H. Wagoner: Int. J. Plast., 2011, vol. 27 (9), pp. 1328–54.

    CAS  Article  Google Scholar 

  45. 45.

    Q.L. Zhao, B. Holmedal, Y.J. Li, E. Sagvolden, and O.M. Løvvik: Mater. Sci. Eng. A, 2015, vol. 625, pp. 153–57.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding from the National Natural Science Foundation of China (Project Nos. 51705315, 51575346, and U1832183). One of the authors (DL) appreciates the support of the Materials Genome Initiative Center, Shanghai Jiao Tong University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dayong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 4, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, K., Zou, T., Li, D. et al. On Formation of Abnormally Large Grains in Annealing Prestrained Aluminum Alloy Multiport Extrusion Tubes. Metall Mater Trans A 50, 5734–5749 (2019). https://doi.org/10.1007/s11661-019-05453-0

Download citation