Wear Performance Analysis of Aluminum Matrix Composites and Optimization of Process Parameters Using Statistical Techniques

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents the wear behavior of gears manufactured using Al matrix composites (AMCs) reinforced with microparticles (with sizes of 40 µm and contents of 5 and 10 wt pct) and nanoparticles (with sizes of < 100 nm and contents of 1 and 2 wt pct) of SiC, fabricated using stir casting. Specially designed test rig was manufactured for determining the wear performance of these gears and investigated under different applied loads and experiment times. The composite prepared using 2 pct SiC nanoparticle reinforcements was superior to other compositions tested in terms of tribological applications. The effectiveness of nanoparticles compared to that of microparticles was analyzed statistically. Taguchi’s method was used for optimizing the wear parameters. Furthermore, the influence of the experiment time, applied load, and SiC content on the wear was investigated and a regression equation was developed for AMCs reinforced with micro- and nanoparticles. The “smaller is better” characteristic was selected as the objective of this model to analyze the wear resistance. The experiment time and applied load had the most significant effect, followed by the SiC content, in the case of microparticles, whereas for nanoparticles, the applied load was the least significant factor when compared to experiment time and SiC content.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    1 M.K. Surappa: Sadhana, 2003, vol. 28, pp. 319–34.

    CAS  Article  Google Scholar 

  2. 2.

    E. Candan, H. Ahlatci, and H. Cimenoglu: Wear, 2001, vol. 247, pp. 133–138.

    CAS  Article  Google Scholar 

  3. 3.

    A.H. Idrisi and A.H.I. Mourad: in 2019 Advances in Science and Engineering Technology International Conferences (ASET), IEEE, 2019, pp. 1–5.

  4. 4.

    A.H. Idrisi and A.-H.I. Mourad: in ASME 2017 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2017, p. V06AT06A033.

  5. 5.

    5 J.M.G. De Salazar and M.I. Barrena: Wear, 2004, vol. 256, pp. 286–93.

    Article  Google Scholar 

  6. 6.

    6 S.K. Ghosh and P. Saha: Mater. Des., 2011, vol. 32, pp. 139–45.

    CAS  Article  Google Scholar 

  7. 7.

    7 S.W. Kim, U.J. Lee, S.W. Han, D.K. Kim, and K. Ogi: Compos. Part B Eng., 2003, vol. 34, pp. 737–45.

    Article  Google Scholar 

  8. 8.

    A. Idrisihussain, V. Singhdev, and V. Saxena: Int. J. Sci. Res. Eng. Technol., 2014, vol. 2, pp. 697–704.

    Google Scholar 

  9. 9.

    A. Idrisi Hussain and S. Deva: Int. J. Sci. Res. Eng. Technol., 2014, pp. 697–704.

  10. 10.

    10 L.J. Yang: Compos. Sci. Technol., 2003, vol. 63, pp. 575–83.

    CAS  Article  Google Scholar 

  11. 11.

    11 A.M. Al-Qutub, I.M. Allam, and T.W. Qureshi: J. Mater. Process. Technol., 2006, vol. 172, pp. 327–31.

    CAS  Article  Google Scholar 

  12. 12.

    12 A.M. Al-Qutub, I.M. Allam, and M.A.A. Samad: J. Mater. Sci., 2008, vol. 43, pp. 5797–803.

    CAS  Article  Google Scholar 

  13. 13.

    13 F. Saba, S.A. Sajjadi, M. Haddad-Sabzevar, and F. Zhang: Diam. Relat. Mater., 2018, vol. 89, pp. 180–9.

    CAS  Article  Google Scholar 

  14. 14.

    14 M.F. Kilicaslan and E. Karaköse: J. Alloys Compd., 2018, vol. 738, pp. 182–7.

    CAS  Article  Google Scholar 

  15. 15.

    15 L. Wu, R. Wu, L. Hou, J. Zhang, and M. Zhang: J. Alloys Compd., 2018, vol. 750, pp. 530–6.

    CAS  Article  Google Scholar 

  16. 16.

    16 A. Fathy, A. Abu-Oqail, and A. Wagih: Ceram. Int., 2018, vol. 44, pp. 22135–45.

    CAS  Article  Google Scholar 

  17. 17.

    17 A.M. Al-Qutub, A. Khalil, N. Saheb, and A.S. Hakeem: Wear, 2013, vol. 297, pp. 752–61.

    CAS  Article  Google Scholar 

  18. 18.

    18 D. Lu, Y. Jiang, and R. Zhou: Wear, 2013, vol. 305, pp. 286–90.

    CAS  Article  Google Scholar 

  19. 19.

    19 C.S. Lee, Y.H. Kim, K.S. Han, and T. Lim: J. Mater. Sci., 1992, vol. 27, pp. 793–800.

    CAS  Article  Google Scholar 

  20. 20.

    20 S.A. Sajjadi, H.R. Ezatpour, and H. Beygi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8765–71.

    CAS  Article  Google Scholar 

  21. 21.

    21 H.R. Ezatpour, S.A. Sajjadi, M.H. Sabzevar, and Y. Huang: Mater. Des., 2014, vol. 55, pp. 921–8.

    CAS  Article  Google Scholar 

  22. 22.

    22 H. Abdizadeh, R. Ebrahimifard, and M.A. Baghchesara: Compos. Part B Eng., 2014, vol. 56, pp. 217–21.

    CAS  Article  Google Scholar 

  23. 23.

    23 S. Gargatte, R.R. Upadhye, V.S. Dandagi, S.R. Desai, and B.S. Waghamode: J. Miner. Mater. Charact. Eng., 2013, vol. 1, p. 8.

    Google Scholar 

  24. 24.

    R.S. Rana, R. Purohit, A. Kumarsharma, and S. Rana: Procedia Mater. Sci., 2014, vol. 6, pp. 503–11.

    CAS  Article  Google Scholar 

  25. 25.

    25 M. Singla, L. Singh, and V. Chawla: J. Miner. Mater. Charact. Eng., 2009, vol. 8, p. 813.

    Google Scholar 

  26. 26.

    26 M.Ş. Tunalioğlu and B. Tuç: Wear, 2014, vol. 309, pp. 208–15.

    Article  Google Scholar 

  27. 27.

    27 Y. Sahin: Mater. Des., 2003, vol. 24, pp. 95–103.

    CAS  Article  Google Scholar 

  28. 28.

    A.H. Idrisi, A.-H.I. Mourad, D.T. Thekkuden, and J.V. Christy: in IOP Conference Series: Materials Science and Engineering, vol. 324, IOP Publishing, 2018, p. 12087.

  29. 29.

    29 S. Basavarajappa, G. Chandramohan, and J.P. Davim: Mater. Des., 2007, vol. 28, pp. 1393–8.

    CAS  Article  Google Scholar 

  30. 30.

    30 R.S. Rana, R. Purohit, and S. Das: Int. J. Sci. Res, 2013, vol. 3, pp. 1–7.

    Google Scholar 

  31. 31.

    31 J.P. Davim: J. Mater. Process. Technol., 2003, vol. 132, pp. 340–4.

    CAS  Article  Google Scholar 

  32. 32.

    32 T. Miyajima and Y. Iwai: Wear, 2003, vol. 255, pp. 606–16.

    CAS  Article  Google Scholar 

  33. 33.

    33 P. Narasimman, M. Pushpavanam, and V.M. Periasamy: Wear, 2012, vol. 292, pp. 197–206.

    Article  Google Scholar 

  34. 34.

    34 I. Garcia, J. Fransaer, and J.-P. Celis: Surf. Coatings Technol., 2001, vol. 148, pp. 171–8.

    CAS  Article  Google Scholar 

  35. 35.

    35 K. Kumar, S. Arul, G. Sriram, V.N. Mani, and V.P. Kumar: Int. J. Curr. Eng. Sci. Res., 2016, vol. 3, pp. 96–103.

    Google Scholar 

  36. 36.

    36 C. Garcia-Cordovilla, J. Narciso, and E. Louis: Wear, 1996, vol. 192, pp. 170–7.

    CAS  Article  Google Scholar 

  37. 37.

    37 M. Moazami-Goudarzi and F. Akhlaghi: Tribol. Int., 2016, vol. 102, pp. 28–37.

    CAS  Article  Google Scholar 

  38. 38.

    38 S. Kumar and V. Balasubramanian: Wear, 2008, vol. 264, pp. 1026–34.

    CAS  Article  Google Scholar 

  39. 39.

    39 J.P. Davim: J. Mater. Process. Technol., 2003, vol. 132, pp. 250–4.

    Article  Google Scholar 

  40. 40.

    40 T. Kıvak: Measurement, 2014, vol. 50, pp. 19–28.

    Article  Google Scholar 

  41. 41.

    41 M.H. Cetin, B. Ozcelik, E. Kuram, and E. Demirbas: J. Clean. Prod., 2011, vol. 19, pp. 2049–56.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the United Arab Emirates University, UAE, for providing the facilities and funding the UPAR research program (Fund Code 31N225), which produced this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdel-Hamid Ismail Mourad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 8, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 293 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Idrisi, A.H., Mourad, A.I. Wear Performance Analysis of Aluminum Matrix Composites and Optimization of Process Parameters Using Statistical Techniques. Metall Mater Trans A 50, 5395–5409 (2019). https://doi.org/10.1007/s11661-019-05446-z

Download citation