Stretchability of Commercial Purity Titanium Sheet

Abstract

The article presents the results of tests to assess stretchability of commercial purity titanium sheet. The plastic strain ratio (r value) indicates strong normal anisotropy and weak planar anisotropy in the plastic properties. The forming limit diagram (FLD), determined by hemispherical punch stretching, exhibits limiting strains that are large at the smallest strain ratios, low at plane strain, and minimum at a strain ratio close to equibiaxial stretching. Hill’s criterion for localized necking, in conjunction with a best fit constitutive equation from the tensile test and the quadratic Hill’s yield surface, predicts the negative minor strain region of the FLD well. However, fracture as the mechanism limiting the deformation cannot be ruled out, especially as the negative minor strain region extends to the positive side with a minimum in the positive side. The increase in limit strains in the positive minor strain region beyond the minimum and the plane strain condition occurring in full dome stretching are explained as “anomalies” due to planar anisotropy. Electron backscatter diffraction (EBSD) studies show a strong basal texture that intensifies when deformed under plane strain and equibiaxial conditions. Under uniaxial tension, the basal plane texture changed to \( \left\{ {0001} \right\}\left\langle {11\bar{2}0} \right\rangle \) texture. Twinning is also found to be more under uniaxial tension. Trends in the mechanical properties correlate well with the EBSD results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    S.P. Keeler and W.A. Backofen: ASM Trans Q., 1963, vol. 56, pp. 25–48.

    Google Scholar 

  2. 2.

    G.M. Goodwin: SAE Tech. Pap. Ser., No. 680093, 1968, pp. 380–87.

  3. 3.

    K.S. Chan: Metall. Trans. A, 1985, vol. 16A, pp. 629–39.

    CAS  Article  Google Scholar 

  4. 4.

    K.S. Chan, D.A. Koss, and A.K. Ghosh: Metall. Trans. A, 1984, vol. 15A, pp. 323–29.

    CAS  Article  Google Scholar 

  5. 5.

    R. Sowerby and J.L. Duncan: Int. J. Mech. Sci., 1971, vol. 13, pp. 421–41.

    Article  Google Scholar 

  6. 6.

    W.F. Hosford and R.M. Caddell: Metal Forming: Mechanics and Metallurgy, 2nd ed., PTR Prentice-Hall, Englewood Cliffs, NJ, 1993, pp. 270–73.

    Google Scholar 

  7. 7.

    S. Pande, S.K. Sahoo, A. Dash, M. Bhagwan, G. Kumar, S.C. Mishra, and S. Suwas: Mater. Charact., 2014, vol. 98, pp. 93–101.

    Article  Google Scholar 

  8. 8.

    Jong WooWon, Chan Hee Park, Seong-Gu Hong, and Chong Soo Lee: J. Alloys Compds., 2015, vol. 651, pp. 245–54.

    CAS  Article  Google Scholar 

  9. 9.

    Xianping Wu, Surya R. Kalidindi, Carl Necker, and Ayman A. Salem: Metall. Mater. Trans. A, 2018, vol. 39A, pp. 3046–54.

    Google Scholar 

  10. 10.

    A. Roth, M.A. Lebyodkin, T.A. Lebedkina, J.S. Lecomte, T. Richeton, and K.E.K. Amouzou: Mater. Sci. Eng. A 2014, vol. 596, pp. 236–43.

    CAS  Article  Google Scholar 

  11. 11.

    C. Ravishankar, R.K. Kumar: Mech. Adv. Mater. Struct., 2012, 19, 663–75.

    Article  Google Scholar 

  12. 12.

    S.S. Hecker: Sheet Met. Ind., 1975, vol. 52, pp. 671–76.

    CAS  Google Scholar 

  13. 13.

    ASTM International: Standard Test Method for Plastic Strain Ratio r for Sheet Metal, ASTM E517, ASTM International, West Conshohocken, PA, 2010.

  14. 14.

    ASTM International: Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8, ASTM International, West Conshohocken, PA, 2013.

  15. 15.

    C. Ravishankar: Ph.D. Thesis, Indian Institute of Technology, Madras, 2006, pp. 37–40.

  16. 16.

    M. Azrin and W.A. Backofen: Metall. Trans., 1970, vol. 1, pp. 2857–65.

    Google Scholar 

  17. 17.

    M.J. Painter and R. Pearce: J. Phys. D: Appl. Phys., 1974, vol. 7, pp. 992–1002.

    CAS  Article  Google Scholar 

  18. 18.

    D.A. Budford, K. Narasimhan, and R.H. Wagoner: Metall. Trans. A, 1991, vol. 22A, pp. 1775–88.

    Article  Google Scholar 

  19. 19.

    ASTM International: Standard Test Method for Determining Forming Limit Curves, ASTM E2218, ASTM International, West Conshohocken, PA, 2015.

  20. 20.

    J.H. Hollomon: Trans. Am. Inst. Min. Metall. Pet. Eng., 1945, vol. 162, pp. 268–90.

    Google Scholar 

  21. 21.

    P. Ludwik: Elemente der Technologischen Mechanik, Verlag von Julius, Springer, Leipzig, 1909.

    Google Scholar 

  22. 22.

    H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–18.

    Article  Google Scholar 

  23. 23.

    E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537–62.

    CAS  Google Scholar 

  24. 24.

    R. Hill: J. Mech. Phys. Solids, 1952, vol. 1, pp. 19–30.

    Article  Google Scholar 

  25. 25.

    Y.B. Chun, S.H. Yu, S.L. Semiatin, S.K. Hwang: Mater. Sci. Eng. A, 2005, vol. 398, pp. 209–19.

    Article  Google Scholar 

  26. 26.

    N Srinivasan, R. Velmurugan, R Kumar, SK Singh, B Pant: Mater. Sci. Eng. A, 2016, vol. 674, pp. 540–51.

    CAS  Article  Google Scholar 

  27. 27.

    Ayman A. Salem, Surya A. Kalidindi, and Roger D. Doherty: Acta Mater., 2003, vol. 51, pp. 4225–37.

    CAS  Article  Google Scholar 

  28. 28.

    G.W. Groves and A. Kelly: Philos. Mag., 1963, vol. 8, pp. 877–87.

    CAS  Article  Google Scholar 

  29. 29.

    M.C. Brandes, W. Morgan, and M.J. Mills: Proc. 13th World Conf. on Titanium, TMS, Warrendale, PA, pp. 1043–49.

  30. 30.

    R. Hill: The Mathematical Theory of Plasticity, Clarendon Press, Oxford, United Kingdom, 1950, pp. 317–40.

    Google Scholar 

  31. 31.

    M. Taghvaipour, J. Chakrabarty, and P.B. Mellor: Int. J. Mech. Sci., 1972, vol. 14, pp. 117–24.

    Article  Google Scholar 

  32. 32.

    Y.C. Liu and L.K. Johnson: Metall. Trans. A, 1985, vol. 16A, pp. 1531–35.

    CAS  Article  Google Scholar 

  33. 33.

    F. Toussaint, L. Tabourot, and F. Ducher: J. Mater. Process. Technol., 2008, vol. 197, pp. 10–16

    CAS  Article  Google Scholar 

  34. 34.

    A.K. Ghosh: Metall. Trans. A, 1976, vol. 7A, pp. 523–33.

    CAS  Article  Google Scholar 

  35. 35.

    K.S. Chan and D.A. Koss: Metall. Trans. A, 1983, vol. 14A, pp. 1343–47.

    CAS  Article  Google Scholar 

  36. 36.

    H. Vegter and A.H. van den Boogaard: Int. J. Plast., 2006, vol. 22, pp. 557–80.

    CAS  Article  Google Scholar 

  37. 37.

    M. Weiss, M.E. Dingle, B.F. Rolfe, P.D. Hodgson: Trans. ASME 2007, 129: 530–37.

    CAS  Article  Google Scholar 

  38. 38.

    Ossama M. Badr, Bernard Rolfe, Peter Hodgson, and Matthias Weiss: Mater. Des., 2015, vol. 66, pp. 618–26.

    CAS  Article  Google Scholar 

  39. 39.

    A.F. Graf and W.F. Hosford: Metall. Trans. A, 1993, vol. 24A, pp. 2503–12.

    CAS  Article  Google Scholar 

  40. 40.

    K.S. Chan and D.A. Koss: Metall. Trans. A, 1983, vol. 14A, pp. 1333–42.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

One of the authors (TMC) thanks the Department of Atomic Energy (DAE), India, for granting a senior research fellowship. The authors thank the Indian Space Research Organisation (ISRO) for providing the CP titanium sheets used in the investigation. The authors are grateful to the Central Workshop Division, IGCAR, for fabrication of the specimens; Ms. Paneer Selvi for her help in tensile testing; and Mr. A. Arasu for his help in grid circle measurements.

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chandrasekaran Ravishankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 25, 2019.

Appendix

Appendix

Hill’s quadratic yield function for the plane stress condition \( g\left( {\sigma_{1} ,\sigma_{2 } } \right) \), for planar isotropic material is[3,4,30]

$$ g\left( {\sigma_{1} ,\sigma_{2 } } \right) = \bar{\sigma }^{2} = \frac{3}{2}\left( {\frac{1 + r}{2 + r}} \right)\left[ {1 - \left( {\frac{2r}{r + 1}} \right)\alpha + \alpha^{2} } \right]\sigma_{1}^{2} $$
(A1)

where \( \sigma_{1} ,\sigma_{2 } \) are the principal stresses, \( \bar{\sigma } \) is the equivalent stress, r is plastic strain ratio and the \( \alpha = \sigma_{2} /\sigma_{1} \) is the stress ratio. The corresponding equivalent strain \( {\text{d}}\bar{\varepsilon} \) is[3,4]

$$ {\text{d}}\bar{\varepsilon } = \sqrt {\frac{2}{3}} \sqrt {\frac{{\left( {2 + r} \right)\left( {1 + r} \right)}}{1 + 2r}} \left[ {1 + \left( {\frac{2r}{r + 1}} \right)\rho + \rho^{2} } \right]^{{\frac{1}{2}}} {\text{d}}\varepsilon_{1} $$
(A2)

where \( {\text{d}}\varepsilon_{1} \), \( {\text{d}}\varepsilon_{2} \) are the principal incremental strains and the \( \rho = {\text{d}}\varepsilon_{2} /{\text{d}}\varepsilon_{1} \) is the strain ratio. From the flow rule it can be shown that, \( \alpha \) and \( \rho \) are related by the relation[3,4]

$$ \alpha = \frac{{\left( {1 + r} \right)\rho + r}}{1 + r + r\rho }. $$
(A3)

Hill’s condition for the formation of a localized neck for negative minor strains is[24]

$$ \frac{1}{{\bar{\sigma }}}\frac{{{\text{d}}\bar{\sigma }}}{{{\text{d}}\bar{\varepsilon }}} \le \frac{{\partial g/\partial \sigma_{1} + \partial g/\partial \sigma_{2} }}{{{\text{d}}g/{\text{d}}\bar{\sigma }}}. $$
(A4)

From Eq. [A1] we obtain

$$ \frac{\partial g}{{\partial \sigma_{1} }} = \frac{3}{2} \frac{{\left( {r + 1} \right)}}{{\left( {r + 2} \right)}}\left[ {2 - \left( {\frac{2r}{1 + r}} \right)\alpha } \right]\sigma_{1} $$
(A5)
$$ \frac{\partial g}{{\partial \sigma_{2} }} = \frac{3}{2} \frac{{\left( {r + 1} \right)}}{{\left( {r + 2} \right)}}\left[ {2\alpha - \frac{2r}{1 + r}} \right]\sigma_{1} $$
(A6)

and

$$ \frac{\partial g}{{\partial \bar{\sigma }}} = 2\bar{\sigma } $$
(A7)

Substituting Eqs. [A5], [A6] and [A7] in the right hand side of Eq. [A4] we obtain

$$ \frac{{{{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial \sigma_{1} }}} \right. \kern-0pt} {\partial \sigma_{1} }} + {{\partial g} \mathord{\left/ {\vphantom {{\partial g} {\partial \sigma_{2} }}} \right. \kern-0pt} {\partial \sigma_{2} }}}}{{{{{\text{d}}g} \mathord{\left/ {\vphantom {{{\text{d}}g} {{\text{d}}\bar{\sigma }}}} \right. \kern-0pt} {{\text{d}}\bar{\sigma }}}}} = \frac{{\sqrt 3 \left( {1 + \alpha } \right)}}{{\sqrt {2\left( {1 + r} \right)\left( {2 + r} \right)\left[ {1 - \left( {{{2r} \mathord{\left/ {\vphantom {{2r} {1 + r}}} \right. \kern-0pt} {1 + r}}} \right)\alpha + \alpha^{2} } \right]} }} $$
(A8)

The Swift constitutive equation in terms of equivalent stress as a function of equivalent strain is[22]

$$ \bar{\sigma } = K_{\text{S}}^{\prime } (\varepsilon_{\text{s}}^{\prime } + {\bar{{\varepsilon }}})^{{n_{\text{s}}^{\prime } }} $$
(A9)

where \( K_{\text{S}}^{'} \), \( \varepsilon_{\text{s}}^{'} \) and \( n_{\text{s}}^{\prime } \) are constants. Differentiating the above we obtain

$$ \frac{{{\text{d}}\bar{\sigma }}}{{{\text{d}}\bar{\varepsilon }}} = K_{\text{S}}^{\prime } n_{\text{s}}^{\prime } (\varepsilon_{\text{s}}^{\prime } + {\bar{{\varepsilon }}})^{{\left( {n_{\text{s}}^{\prime } - 1} \right)}} . $$
(A10)

Substituting Eqs. [A9] and [A10] in the left hand side of Eq. [A4] we have

$$ \frac{1}{{\bar{\sigma }}}\frac{{{\text{d}}\bar{\sigma }}}{{{\text{d}}\bar{\varepsilon }}} = \frac{{n_{\text{s}}^{\prime } }}{{\varepsilon_{\text{s}}^{\prime } + {\bar{{\varepsilon }}}}}. $$
(A11)

From Eqs. [A2], [A8] and [A11] we obtain the critical equivalent strain for the onset of localized necking \( {\bar{{\varepsilon }}}^{*} \)to be

$$ {\bar{{\varepsilon }}}^{*} = \frac{{f\left( \rho \right)n_{\text{s}}^{\prime } }}{1 + \rho } - \varepsilon_{\text{s}}^{\prime } $$
(A12)

where

$$ f\left( \rho \right) = \sqrt {\frac{2}{3}} \sqrt {\frac{{\left( {2 + r} \right)\left( {1 + r} \right)}}{1 + 2r}} \left[ {1 + \left( {\frac{2r}{r + 1}} \right)\rho + \rho^{2} } \right]^{{\frac{1}{2}}} . $$
(A13)

When deformation is along linear paths the limiting major strain \( \varepsilon_{1}^{*} \), determined by substituting Eq. [A2] in Eq. [A12] and replacing the principal strain in place of the incremental strain, is:

$$ \varepsilon_{1}^{*} = \frac{{n_{\text{s}}^{\prime } }}{1 + \rho } - \frac{{\varepsilon_{\text{s}}^{\prime } }}{f\left( \rho \right)} . $$
(A14)

Since volume is conserved during plastic deformation \( \varepsilon_{3} = - \left( {1 + \rho } \right)\varepsilon_{3} \), the thickness strain at the onset of localized necking \( \varepsilon_{3}^{*} \)obtained from Eq. [A11] is

$$ \varepsilon_{3}^{*} = n_{\text{s}}^{\prime } - \frac{{\left( {1 + \rho } \right)\varepsilon_{\text{s}}^{\prime } }}{f\left( \rho \right)} . $$
(A15)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chinapareddygari, T.M., Ravishankar, C., Thangaraj, K. et al. Stretchability of Commercial Purity Titanium Sheet. Metall Mater Trans A 50, 5602–5613 (2019). https://doi.org/10.1007/s11661-019-05417-4

Download citation