Dynamic Transformation of Two-Phase Titanium Alloys in Stable and Unstable States

Abstract

The dynamic transformations of titanium alloys are compared in stable and unstable states. In an unstable state, the driving force for the transformation is given by the Gibbs energy difference associated with undercooling, and it can be derived from either enthalpy/transus temperature or solid solution thermodynamics methods. Such transformations are accelerated by deformation through the increases in the nucleation site density and the kinetics of diffusion. In a stable state, the Gibbs energy can be calculated using solid solution thermodynamics method, and it acts as the energy barrier for the dynamic transformation. The dynamic transformation is dependent on the initial thermodynamic states associated with holding conditions prior to deformation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, K. Maruyama: Acta materialia, 2000, vol. 48, pp. 2059-2069.

    CAS  Article  Google Scholar 

  2. 2.

    T. Zhang, Y. Liu, D. G. Sanders, B. Liu, W. Zhang, C. Zhou: Materials Science and Engineering: A, 2014, vol. 608, pp. 265-272.

    CAS  Article  Google Scholar 

  3. 3.

    K. Wang, G. Liu, W. Tao, J. Zhao, K. Huang: Materials Characterization, 2017, vol. 126, pp. 57-63.

    Article  Google Scholar 

  4. 4.

    J. J. Jonas, C. Aranas Jr, A. Fall, M. Jahazi: Materials & Design, 2017, vol. 113, pp. 305-310.

    CAS  Article  Google Scholar 

  5. 5.

    L. Kai, Y. Ping: Transactions of Nonferrous Metals Society of China, 2019, vol. 29, pp. 296-304.

    Article  Google Scholar 

  6. 6.

    B. Guo, S. L. Semiatin, J. J. Jonas, S. Yue: Journal of Materials Science, 2018, vol. 53, pp. 9305-9315.

    CAS  Article  Google Scholar 

  7. 7.

    W. Zhang, H. Ding, M. Cai, W. Yang, J. Li: Materials Science and Engineering: A, 2018, vol. 727, pp. 90-96.

    CAS  Article  Google Scholar 

  8. 8.

    L. He, A. Dehghan-Manshadi, R. Dippenaar: Materials Science and Engineering: A, 2012, vol. 549, pp. 163-167.

    CAS  Article  Google Scholar 

  9. 9.

    A. Dehghan-Manshadi, R. J. Dippenaar: Materials Science and Engineering: A, 2012, vol. 552, pp. 451-456.

    CAS  Article  Google Scholar 

  10. 10.

    J. Henderson and H. Groot: Technical Report No. TPRL 1284. Thermophysical Properties Research Laboratory, Purdue University, West Lafayette, 1993.

  11. 11.

    R. Doherty: in Physical Metallurgy. R.W. Cahn, P. Haasen, eds., 4th ed., Elsevier, Amsterdam, 1996, pp. 1363–1505.

  12. 12.

    S. L. Semiatin, S. Knisley, P. Fagin, D. Barker, F. Zhang: Metallurgical and Materials Transactions A, 2003, vol. 34, pp. 2377-2386.

    Article  Google Scholar 

  13. 13.

    J. J. Jonas, C. Ghosh: Acta Materialia, 2013, vol. 61, pp. 6125-6131.

    CAS  Article  Google Scholar 

  14. 14.

    X. Fan, H. Yang: International Journal of Plasticity, 2011, vol. 27, pp. 1833-1852.

    CAS  Article  Google Scholar 

  15. 15.

    L. Zhao, N. Park, Y. Tian, A. Shibata, N. Tsuji: Materials Research Letters, 2018, vol. 6, pp. 641-647.

    CAS  Article  Google Scholar 

  16. 16.

    T. Seshacharyulu, B. Dutta: Scripta Materialia, 2002, vol. 46, pp. 673-678.

    CAS  Article  Google Scholar 

  17. 17.

    Y. Lin, J. Huang, D.-G. He, X.-Y. Zhang, Q. Wu, L.-H. Wang, C. Chen, K.-C. Zhou: Journal of Alloys and Compounds, 2019, vol. 795, pp. 471-482.

    CAS  Article  Google Scholar 

  18. 18.

    K. Hua, J. Li, H. Kou, J. Fan, M. Sun, B. Tang: Journal of Alloys and Compounds, 2016, vol. 671, pp. 381-388.

    CAS  Article  Google Scholar 

  19. 19.

    K. Hua, X. Xue, H. Kou, J. Fan, B. Tang, J. Li: Journal of Alloys and Compounds, 2014, vol. 615, pp. 531-537.

    CAS  Article  Google Scholar 

  20. 20.

    A.M. Fall, D. Piot, F. Montheillet, and S. Andrieu: in Occurrence of Dynamic Alpha-Phase Nucleation in Ti-5553 During Hot Deformation, Advanced Materials Research, 2014, pp. 149–54. Trans Tech Publ.

  21. 21.

    S. Malinov, W. Sha, P. Markovsky: Journal of alloys and compounds, 2003, vol. 348, pp. 110-118.

    CAS  Article  Google Scholar 

  22. 22.

    S. Malinov, P. Markovsky, W. Sha, Z. Guo: Journal of Alloys and Compounds, 2001, vol. 314, pp. 181-192.

    CAS  Article  Google Scholar 

  23. 23.

    M. Meng, X. Fan, Y. Chen, H. Guo, L. Guo, M. Zhan: Materials Science and Engineering: A, 2018, vol. 738, pp. 389-398.

    CAS  Article  Google Scholar 

Download references

The authors are grateful to Dr. S. L. Semiatin of the Air Force Research Laboratory at the Wright-Patterson Air Force Base in Dayton, Ohio, US for his help with the thermodynamics. The discussions with Professor Mohammad Jahazi and Dr. Ameth Fall of Ecole de Technologie Superieure (ETS) are acknowledged with gratitude.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 20, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Liu, Y. & Jonas, J.J. Dynamic Transformation of Two-Phase Titanium Alloys in Stable and Unstable States. Metall Mater Trans A 50, 4502–4505 (2019). https://doi.org/10.1007/s11661-019-05402-x

Download citation