Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4502–4505 | Cite as

Dynamic Transformation of Two-Phase Titanium Alloys in Stable and Unstable States

  • Baoqi Guo
  • Yang LiuEmail author
  • John J. Jonas
Communication
  • 108 Downloads

Abstract

The dynamic transformations of titanium alloys are compared in stable and unstable states. In an unstable state, the driving force for the transformation is given by the Gibbs energy difference associated with undercooling, and it can be derived from either enthalpy/transus temperature or solid solution thermodynamics methods. Such transformations are accelerated by deformation through the increases in the nucleation site density and the kinetics of diffusion. In a stable state, the Gibbs energy can be calculated using solid solution thermodynamics method, and it acts as the energy barrier for the dynamic transformation. The dynamic transformation is dependent on the initial thermodynamic states associated with holding conditions prior to deformation.

Notes

The authors are grateful to Dr. S. L. Semiatin of the Air Force Research Laboratory at the Wright-Patterson Air Force Base in Dayton, Ohio, US for his help with the thermodynamics. The discussions with Professor Mohammad Jahazi and Dr. Ameth Fall of Ecole de Technologie Superieure (ETS) are acknowledged with gratitude.

References

  1. 1.
    J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, K. Maruyama: Acta materialia, 2000, vol. 48, pp. 2059-2069.Google Scholar
  2. 2.
    T. Zhang, Y. Liu, D. G. Sanders, B. Liu, W. Zhang, C. Zhou: Materials Science and Engineering: A, 2014, vol. 608, pp. 265-272.Google Scholar
  3. 3.
    K. Wang, G. Liu, W. Tao, J. Zhao, K. Huang: Materials Characterization, 2017, vol. 126, pp. 57-63.Google Scholar
  4. 4.
    J. J. Jonas, C. Aranas Jr, A. Fall, M. Jahazi: Materials & Design, 2017, vol. 113, pp. 305-310.Google Scholar
  5. 5.
    L. Kai, Y. Ping: Transactions of Nonferrous Metals Society of China, 2019, vol. 29, pp. 296-304.Google Scholar
  6. 6.
    B. Guo, S. L. Semiatin, J. J. Jonas, S. Yue: Journal of Materials Science, 2018, vol. 53, pp. 9305-9315.Google Scholar
  7. 7.
    W. Zhang, H. Ding, M. Cai, W. Yang, J. Li: Materials Science and Engineering: A, 2018, vol. 727, pp. 90-96.Google Scholar
  8. 8.
    L. He, A. Dehghan-Manshadi, R. Dippenaar: Materials Science and Engineering: A, 2012, vol. 549, pp. 163-167.Google Scholar
  9. 9.
    A. Dehghan-Manshadi, R. J. Dippenaar: Materials Science and Engineering: A, 2012, vol. 552, pp. 451-456.Google Scholar
  10. 10.
    J. Henderson and H. Groot: Technical Report No. TPRL 1284. Thermophysical Properties Research Laboratory, Purdue University, West Lafayette, 1993.Google Scholar
  11. 11.
    R. Doherty: in Physical Metallurgy. R.W. Cahn, P. Haasen, eds., 4th ed., Elsevier, Amsterdam, 1996, pp. 1363–1505.Google Scholar
  12. 12.
    S. L. Semiatin, S. Knisley, P. Fagin, D. Barker, F. Zhang: Metallurgical and Materials Transactions A, 2003, vol. 34, pp. 2377-2386.Google Scholar
  13. 13.
    J. J. Jonas, C. Ghosh: Acta Materialia, 2013, vol. 61, pp. 6125-6131.Google Scholar
  14. 14.
    X. Fan, H. Yang: International Journal of Plasticity, 2011, vol. 27, pp. 1833-1852.Google Scholar
  15. 15.
    L. Zhao, N. Park, Y. Tian, A. Shibata, N. Tsuji: Materials Research Letters, 2018, vol. 6, pp. 641-647.Google Scholar
  16. 16.
    T. Seshacharyulu, B. Dutta: Scripta Materialia, 2002, vol. 46, pp. 673-678.Google Scholar
  17. 17.
    Y. Lin, J. Huang, D.-G. He, X.-Y. Zhang, Q. Wu, L.-H. Wang, C. Chen, K.-C. Zhou: Journal of Alloys and Compounds, 2019, vol. 795, pp. 471-482.Google Scholar
  18. 18.
    K. Hua, J. Li, H. Kou, J. Fan, M. Sun, B. Tang: Journal of Alloys and Compounds, 2016, vol. 671, pp. 381-388.Google Scholar
  19. 19.
    K. Hua, X. Xue, H. Kou, J. Fan, B. Tang, J. Li: Journal of Alloys and Compounds, 2014, vol. 615, pp. 531-537.Google Scholar
  20. 20.
    A.M. Fall, D. Piot, F. Montheillet, and S. Andrieu: in Occurrence of Dynamic Alpha-Phase Nucleation in Ti-5553 During Hot Deformation, Advanced Materials Research, 2014, pp. 149–54. Trans Tech Publ.Google Scholar
  21. 21.
    S. Malinov, W. Sha, P. Markovsky: Journal of alloys and compounds, 2003, vol. 348, pp. 110-118.Google Scholar
  22. 22.
    S. Malinov, P. Markovsky, W. Sha, Z. Guo: Journal of Alloys and Compounds, 2001, vol. 314, pp. 181-192.Google Scholar
  23. 23.
    M. Meng, X. Fan, Y. Chen, H. Guo, L. Guo, M. Zhan: Materials Science and Engineering: A, 2018, vol. 738, pp. 389-398.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringMcGill UniversityMontrealCanada

Personalised recommendations