Microstructure Formation and Micropillar Compression of Al-TiC Nanocomposite Manufactured by Solidification Nanoprocessing

Abstract

The microstructure and mechanical responses of a pseudo-dispersed Al-TiC nanocomposite were thoroughly studied using micropillar compression and high-resolution transmission electron microscopy (HRTEM). The microstructure of the Al-7 vol pct TiC nanocomposite comprised the α-Al matrix, DO22-Al3Ti platelet and Al4C3, along with TiC domains in which ~ 30 vol pct TiC nanoparticles were loaded without sintering contact. The pseudo-dispersion of TiC nanoparticles was rationalized by the relationship between Van der Waals attraction, Brownian motion, and energy barrier. The microscale tetragonal DO22-Al3Ti compound exhibited excellent yield strength (YS) (1400 to 1667 MPa) and microplasticity (10.8 pct). Intermittent discrete strain bursts and size effects were observed in the single-crystalline Al/Al3Ti pillars. The remarkable YS (720 MPa) of the 3 μm Al-30 vol pct TiC composite pillars was attributed to Orowan strengthening and load transfer. The crystallographic orientation relationship at the Al/TiC interface was identified to be \( \left[ { 1 1 0} \right] (\bar{1}\bar{1}1 )_{\text{Al}} \parallel [ 1 1 0 ] (\bar{1}\bar{1}1 )_{\text{TiC}} \), while the solid bonding guaranteed the effective load transfer and prevented the dislocation avalanche. Nano-twins and edge dislocations were observed in the HRTEM images of TiC NPs and [Al + TiC] mixture, which suggested that the major deformation mechanisms of the Al-30 vol pct TiC composite pillars were dislocation ‘pile-up’ and twins.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    L. Ceschini, A. Dahle, M. Gupta, A.E.W. Jarfors, S. Jayalakshmi, A. Morri, F. Rotundo, S. Toschi and R. Arvind Singh, In Aluminum and magnesium metal matrix nanocomposites, (Springer Singapore: Singapore, 2017), pp 95–137.

    Google Scholar 

  2. 2.

    V. Viswanathan, T. Laha, K. Balani, A. Agarwal and S. Seal, Materials Science and Engineering: R: Reports 2006, vol. 54, pp. 121-285.

    Google Scholar 

  3. 3.

    Lian-Yi Chen, Jia-Quan Xu, Hongseok Choi, Marta Pozuelo, Xiaolong Ma, Sanjit Bhowmick, Jenn-Ming Yang, Suveen Mathaudhu and Xiao-Chun Li, Nature 2015, vol. 528, pp. 539-543.

    CAS  Google Scholar 

  4. 4.

    Zeyi Guan, Injoo Hwang, Shuaihang Pan and Xiaochun Li, Journal of Micro and Nano-Manufacturing 2018, vol. 6, pp. 031008-031008-6.

    Google Scholar 

  5. 5.

    Abdolreza Javadi, Shuaihang Pan and Xiaochun Li, Manufacturing Letters 2018, vol. 17, pp. 23-26.

    Google Scholar 

  6. 6.

    Weiqing Liu, Chezheng Cao, Jiaquan Xu, Xiaojun Wang and Xiaochun Li, Mater Lett 2016, vol. 185, pp. 392-395.

    CAS  Google Scholar 

  7. 7.

    S. W. Feng, Q. Guo, Z. Li, G. L. Fan, Z. Q. Li, D. B. Xiong, Y. S. Su, Z. Q. Tan, J. Zhang and D. Zhang, Acta Mater 2017, vol. 125, pp. 98-108.

    CAS  Google Scholar 

  8. 8.

    Seung Min Han, Mark A. Phillips and William D. Nix, Acta Mater 2009, vol. 57, pp. 4473-4490.

    CAS  Google Scholar 

  9. 9.

    Sudhanshu S. Singh, Enyu Guo, Huxiao Xie and Nikhilesh Chawla, Intermetallics 2015, vol. 62, pp. 69-75.

    CAS  Google Scholar 

  10. 10.

    J. Ding, Q. Li, J. Li, S. Xue, Z. Fan, H. Wang and X. Zhang, Acta Mater 2018, vol. 149, pp. 57-67.

    CAS  Google Scholar 

  11. 11.

    J. B. Holt and Z. A. Munir, Journal of Materials Science 1986, vol. 21, pp. 251-259.

    CAS  Google Scholar 

  12. 12.

    Huabing Yang, Tong Gao, Haichao Wang, Jinfeng Nie and Xiangfa Liu, Journal of Materials Science & Technology 2017, vol. 33, pp. 616-622.

    Google Scholar 

  13. 13.

    H. Zhang, B. E. Schuster, Q. Wei and K. T. Ramesh, Scripta Mater 2006, vol. 54, pp. 181-186.

    CAS  Google Scholar 

  14. 14.

    M.A. Meyers and K.K. Chawla: Mechanical behavior of materials. (Cambridge University Press, 2009).

    Google Scholar 

  15. 15.

    Julia R. Greer, Warren C. Oliver and William D. Nix, Acta Mater 2005, vol. 53, pp. 1821-1830.

    CAS  Google Scholar 

  16. 16.

    K. S. Ng and A. H. W. Ngan, Acta Mater 2008, vol. 56, pp. 1712-1720.

    CAS  Google Scholar 

  17. 17.

    M. D. Uchic, P. A. Shade and D. M. Dimiduk, Annu Rev Mater Res 2009, vol. 39, pp. 361-386.

    CAS  Google Scholar 

  18. 18.

    Subin Lee, Jiwon Jeong, Youbin Kim, Seung Min Han, Daniel Kiener and Sang Ho Oh, Acta Mater 2016, vol. 110, pp. 283-294.

    CAS  Google Scholar 

  19. 19.

    Dalun Ye: Handbook of thermodynamic data of practical inorganic substances 2nd ed. (Metallurgical Industry Press, Beijing, China, 2002).

    Google Scholar 

  20. 20.

    J.N. Israelachvili: Intermolecular and surface forces. 3 ed. (Academic Press, 2015).

    Google Scholar 

  21. 21.

    V. H. López and A. R. Kennedy, J. Colloid Interface Sci. 2006, vol. 298, pp. 356-362.

    Google Scholar 

  22. 22.

    S. K. Rhee, J Am Ceram Soc 1970, vol. 53, pp. 386-389.

    CAS  Google Scholar 

  23. 23.

    Qiaoli Lin, Ping Shen, Longlong Yang, Shenbao Jin and Qichuan Jiang, Acta Mater 2011, vol. 59, pp. 1898-1911.

    CAS  Google Scholar 

  24. 24.

    Stefano Melis, Marcel Verduyn, Giuseppe Storti, Massimo Morbidelli and Jerzy Bałdyga, AlChE J. 1999, vol. 45, pp. 1383-1393.

    CAS  Google Scholar 

  25. 25.

    R. Asthana and S. N. Tewari, Journal of Materials Science 1993, vol. 28, pp. 5414-5425.

    CAS  Google Scholar 

  26. 26.

    D. R. Uhlmann, B. Chalmers and K. A. Jackson, J. Appl. Phys. 1964, vol. 35, pp. 2986-2993.

    CAS  Google Scholar 

  27. 27.

    G. Kaptay, Metallurgical and Materials Transactions A 2001, vol. 32, pp. 993-1005.

    Google Scholar 

  28. 28.

    J. Q. Xu, L. Y. Chen, H. Choi and X. C. Li, J. Phys.: Condens. Matter 2012, vol. 24, pp. 255304-255314.

    CAS  Google Scholar 

  29. 29.

    D. Shangguan, S. Ahuja and D. M. Stefanescu, Metallurgical Transactions A 1992, vol. 23, pp. 669-680.

    Google Scholar 

  30. 30.

    J. K. Kim and P. K. Rohatgi, Metallurgical and Materials Transactions A 1998, vol. 29, pp. 351-358.

    Google Scholar 

  31. 31.

    E. A. Starke, Y. Khalfalla and K. Y. Benyounis, In Reference Module in Materials Science and Materials Engineering, (Elsevier: 2016).

    Google Scholar 

  32. 32.

    Zichuan Lu, Ningxia Wei, Peng Li, Chunhuan Guo and Fengchun Jiang, Materials & Design 2016, vol. 110, pp. 466-474.

    Google Scholar 

  33. 33.

    R. Mitra: Structural intermetallics and intermetallic matrix composites. (CRC Press, 2015).

    Google Scholar 

  34. 34.

    M. Yamaguchi, Y. Umakoshi and T. Yamane, Philosophical Magazine A 1987, vol. 55, pp. 301-315.

    CAS  Google Scholar 

  35. 35.

    Yunyi Fu, Rong Shi, Jinxu Zhang, Jian Sun and Gengxiang Hu, Intermetallics 2000, vol. 8, pp. 1251-1256.

    Google Scholar 

  36. 36.

    Sandra Korte-Kerzel, MRS Communications 2017, vol. 7, pp. 109-120.

    CAS  Google Scholar 

  37. 37.

    K. S. Ng and A. H. W. Ngan, Scripta Mater 2008, vol. 59, pp. 796-799.

    CAS  Google Scholar 

  38. 38.

    Julia R. Greer and William D. Nix, Physical Review B 2006, vol. 73, p. 245410.

    Google Scholar 

  39. 39.

    S. I. Rao, D. M. Dimiduk, T. A. Parthasarathy, M. D. Uchic, M. Tang and C. Woodward, Acta Mater 2008, vol. 56, pp. 3245-3259.

    CAS  Google Scholar 

  40. 40.

    Triplicane A. Parthasarathy, Satish I. Rao, Dennis M. Dimiduk, Michael D. Uchic and Dallas R. Trinkle, Scripta Mater 2007, vol. 56, pp. 313-316.

    CAS  Google Scholar 

  41. 41.

    Chawla N. and Shen Y.-L., Adv. Eng. Mater. 2001, vol. 3, pp. 357-370.

    CAS  Google Scholar 

  42. 42.

    Hanry Yang, Lin Jiang, Martin Balog, Peter Krizik and Julie M. Schoenung, Metallurgical and Materials Transactions A 2017, vol. 48, pp. 4385-4392.

    CAS  Google Scholar 

  43. 43.

    Shanmugasundaram Thangaraju, Martin Heilmaier, Budaraju Srinivasa Murty and Subramanya Sarma Vadlamani, Adv. Eng. Mater. 2012, vol. 14, pp. 892-897.

    CAS  Google Scholar 

  44. 44.

    V. C. Nardone and K. M. Prewo, Scripta Metallurgica 1986, vol. 20, pp. 43-48.

    CAS  Google Scholar 

  45. 45.

    Geoffrey Ingram Taylor, Proceedings of the Royal Society of London. Series A 1934, vol. 145, pp. 362-87.

    CAS  Google Scholar 

  46. 46.

    Chang-Soo Kim, Kyu Cho, Mohsen H. Manjili and Marjan Nezafati, Journal of Materials Science 2017, vol. 52, pp. 13319-13349.

    CAS  Google Scholar 

  47. 47.

    J. Zhang, J. Y. Wang and Y. C. Zhou, Acta Mater 2007, vol. 55, pp. 4381-4390.

    CAS  Google Scholar 

  48. 48.

    Ting Sun, Xiaozhi Wu, Rui Wang, Weiguo Li and Qing Liu, Comp Mater Sci 2017, vol. 126, pp. 108-120.

    CAS  Google Scholar 

  49. 49.

    M. X. Zhang, P. M. Kelly, M. A. Easton and J. A. Taylor, Acta Mater 2005, vol. 53, pp. 1427-1438.

    CAS  Google Scholar 

  50. 50.

    L. E. Murr: Interfacial phenomena in metals and alloys. (Addison-Wesley Publishing Company, United States, 1975).

    Google Scholar 

  51. 51.

    Hui Zhang, Xiaohui Wang, Zhaojin Li and Yanchun Zhou, Journal of Materials Research 2014, vol. 29, pp. 1113-1121.

    Google Scholar 

  52. 52.

    R. Yu, L. L. He and H. Q. Ye, Acta Mater 2003, vol. 51, pp. 2477-2484.

    CAS  Google Scholar 

  53. 53.

    Michael D. Uchic, Dennis M. Dimiduk, Jeffrey N. Florando and William D. Nix, Science 2004, vol. 308.

    Google Scholar 

Download references

Acknowledgment

The authors thank Noah Bodzin at the University of California, Los Angeles (UCLA). The assistance with pillar fabrication, FIBs operation and TEM sample preparation, as well as professional guidance for the in situ microcompression are greatly appreciated. We also acknowledge the Molecular & Nano Archaeology (MNA) Laboratory and Nano-electronics Research Facility, UCLA, who provide the SEM/FIBs facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zuqi Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 22, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Cao, C., Pozuelo, M. et al. Microstructure Formation and Micropillar Compression of Al-TiC Nanocomposite Manufactured by Solidification Nanoprocessing. Metall Mater Trans A 50, 4620–4631 (2019). https://doi.org/10.1007/s11661-019-05389-5

Download citation