Skip to main content
Log in

Martensite Reversion Duality Behavior in a Cold-Rolled High Mn Transformation-Induced Plasticity Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The martensite reversion behavior of a cold-rolled high Mn transformation-induced plasticity (TRIP) steel was investigated through an elaborate continuous annealing procedure. The dilatometry analysis was employed to ensure a precise heating rate (50 °C/s) control during annealing along with acquiring the critical temperature range of the martensite reversion. The magnetic measurement was used for \( \alpha^{\prime} \)-martensite quantification through annealing, and electron channeling contrast imaging (ECCI) and transmission electron microscopy (TEM) analyses were also performed to characterize the microstructure. The dilatometry results revealed the dual temperature ranges for the \( \alpha^{\prime} \)-martensite reversion in the experimental TRIP steel; the reversion occurred in two separate temperature regions of 540 °C to 730 °C and 730 °C to 850 °C. Although the inhomogeneity in the morphology of \( \alpha^{\prime} \)-martensite (lath type and dislocation cell type), which was detected in the ECCI image of the cold-rolled structure, might be responsible for the reversion temperature range broadening, the discontinuity of the reversion was mainly attributed to the partitioning of Mn from \( \alpha^{\prime} \)-martensite to austenite through annealing. The microstructural characterizations indicated that the duality would also exist in the case of the martensite reversion mechanism. Accordingly, the reversion of lath-type martensite appeared to occur merely through an athermal mechanism, while the dislocation cell-type martensite might be reversed to austenite via both shear and diffusional mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, and A. Kyröläinen: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 729–44.

    Article  CAS  Google Scholar 

  2. S.J. Lee, Y.M. Park, and Y.K. Lee: Mater. Sci. Eng. A, 2009, vol. 515, pp. 32–37.

    Article  Google Scholar 

  3. Y.S. Jung and Y.K. Lee: Scripta Mater., 2008, vol. 59, pp. 47–50.

    Article  CAS  Google Scholar 

  4. K. Tomimura, S. Takaki, and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 1431–37.

    Article  CAS  Google Scholar 

  5. R. Kapoor, L. Kumar, and I. Batra: Mater. Sci. Eng. A, 2003, vol. 352, pp. 318–24.

    Article  Google Scholar 

  6. S. Takaki, K. Tomimura, and S. Ueda: ISIJ Int., 1994, vol. 34, pp. 522–27.

    Article  CAS  Google Scholar 

  7. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  8. M. Eskandari, A. Zarei-hanzaki, M.A. Mohtadi-bonab, Y. Onuki, R. Basu, and A. Asghari: 2016, vol. 674, pp. 514–28.

    CAS  Google Scholar 

  9. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.

    Article  CAS  Google Scholar 

  10. H.E. Sabzi, A. Hanzaki, H.R. Abedi, R. Soltani, A. Mateo, and J.J. Roa: Mater. Sci. Eng. A, 2016, 678, 23–32.

    Article  CAS  Google Scholar 

  11. N. Eftekhari, A. Zarei-Hanzaki, A. Shamsolhodaei, A.L. Helbert, and T. Baudin: Adv. Eng. Mater., 2018, vol. 1700928, pp. 1–12.

    Google Scholar 

  12. A. Barabi, A. Zarei-Hanzaki, H. Abedi, A. Anoushe, and J.-H. Cho: Steel Res. Int., 2018, 89, art. no. 1800245.

    Article  Google Scholar 

  13. P. Dastur, A. Zarei-Hanzaki, M.H. Pishbin, M. Moallemi, and H.R. Abedi: Mater. Sci. Eng. A, 2017, vol. 696, pp. 511–19.

    Article  CAS  Google Scholar 

  14. C. Herrera, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 4653–64.

    Article  CAS  Google Scholar 

  15. P. Dastur, A. Zarei-Hanzaki, R. Rahimi, V. Klemm, B.C. De Cooman, and J. Mola: Philos. Mag. Lett., 2018, vol. 98, pp. 55–63.

    Article  CAS  Google Scholar 

  16. A. Asghari, A. Zarei-Hanzaki, and M. Eskandari: Mater. Sci. Eng. A, 2013, vol. 579, pp. 150–56.

    Article  CAS  Google Scholar 

  17. S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3263–70.

    Article  CAS  Google Scholar 

  18. K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R Rep., 2009, vol. 65, pp. 39–104.

    Article  Google Scholar 

  19. B. Kumar and S. Sharma: Metall. Mater. Trans. A, 2014, 45A, 6027–38.

    Article  Google Scholar 

  20. A. Kisko, A.S. Hamada, J. Talonen, D. Porter, and L.P. Karjalainen: Mater. Sci. Eng. A, 2016, vol. 657, pp. 359–70.

    Article  CAS  Google Scholar 

  21. S. Sabooni, F. Karimzadeh, M.H. Enayati, and A.H.W. Ngan: Mater. Sci. Eng. A, 2015, vol. 636, pp. 221–30.

    Article  CAS  Google Scholar 

  22. D.L. Johannsen, A. Kyrolainen, and P.J. Ferreira: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2325–38.

    Article  CAS  Google Scholar 

  23. S. Lee, S.-J. Lee, and B.C. De Cooman: Scripta Mater., 2011, vol. 65, pp. 225–28.

    Article  CAS  Google Scholar 

  24. B.C. De Cooman, P. Gibbs, S. Lee, and D.K. Matlock: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2563–72.

    Article  Google Scholar 

  25. R.D.K. Misra, V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani, and L.P. Karjalainen: Acta Mater., 2015, vol. 84, pp. 339–48.

    Article  CAS  Google Scholar 

  26. D.-S. Leem, Y.-D. Lee, J.-H. Jun, and C.-S. Choi: Scripta Mater., 2001, vol. 45, pp. 767–72.

    Article  CAS  Google Scholar 

  27. C. Celada-Casero, B.M. Huang, M.M. Aranda, J.R. Yang, and D.S. Martin: Mater. Charact., 2016, vol. 118, pp. 129–41.

    Article  CAS  Google Scholar 

  28. N. Nakada, R. Fukagawa, T. Tsuchiyama, S. Takaki, D. Ponge, and D. Raabe: ISIJ Int., 2013, vol. 53, pp. 1286–88.

    Article  CAS  Google Scholar 

  29. R.D.K. Misra, S. Nayak, P.K.C. Venkatasurya, V. Ramuni, M.C. Somani, and L.P. Karjalainen: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2162–74.

    Article  CAS  Google Scholar 

  30. R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani, and L.P. Karjalainen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7779–92.

    Article  Google Scholar 

  31. T. Furuhara and T. Maki: Mater. Sci. Eng. A, 2001, vol. 312, pp. 145–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zarei-Hanzaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 2, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastur, P., Zarei-Hanzaki, A., Rahimi, R. et al. Martensite Reversion Duality Behavior in a Cold-Rolled High Mn Transformation-Induced Plasticity Steel. Metall Mater Trans A 50, 4550–4560 (2019). https://doi.org/10.1007/s11661-019-05385-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05385-9

Navigation