Wetting and Spreading Behavior of Liquid Si-Ti Eutectic Alloy in Contact with Glassy Carbon and SiC at T = 1450 °C


The contact heating (CH) sessile drop and capillary purification (CP) methods were applied for a fundamental study concerning the wettability and reactivity of liquid Si-16.2 at. pct Ti alloy (eutectic composition) in contact with glassy carbon (GC) and SiC at T = 1450 °C under an Ar atmosphere. Different spreading stages with different slopes, depending on the starting conditions of the materials used, where observed. On the contrary, the final contact angle value seemed not affected and the values of θ ≈ 44 deg ± 2 and θ ≈ 42 deg ± 2 where displayed on GC and SiC, respectively. The solidified Si-Ti eutectics/GC and Si-Ti eutectics/SiC samples were examined both at the top of the drop and at the cross section by scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS). The presence of a SiC layer as unique reaction product at the Si-Ti eutectics/GC interface, confirmed that wettability is mainly driven by reactivity. Contrarily, as nonreactive system, at the Si-Ti eutectics/SiC interface a weak dissolution of SiC substrate was detected.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    D.B. Miracle: Aeronautical applications of metal-matrix composites, S.D. Henry et al., eds., ASM Handbook, ASM International, Materials Park, OH, 2001.

  2. 2.

    X. Zhang, Y. Chen, and J. Hu: Progr. Aero. Sci., 2018, vol. 97, pp. 22–34.

    Article  Google Scholar 

  3. 3.

    H. Singh, S.J. Nrip, and A.K. Tyagi: J. Eng. Res. Stud., 2011, vol. 2, pp. 72–78.

    CAS  Google Scholar 

  4. 4.

    Ž. Gnjidić, D. Božić, and M. Mitkov: Mater. Charact., 2001, vol. 47, pp. 129–38.

    Article  Google Scholar 

  5. 5.

    J.N. Ness and T.F. Page: J. Mater. Sci., 1986, vol. 21, pp. 1377–97.

    CAS  Article  Google Scholar 

  6. 6.

    A.J. Whitehead and T.F. Page: J. Mater. Sci., 1992, vol. 27, pp. 839–52.

    CAS  Article  Google Scholar 

  7. 7.

    M. Caccia and J. Narciso: Ceram. Trans., 2015, vol. 245, pp. 15–252.

    Google Scholar 

  8. 8.

    M. Caccia and J. Narciso: Mater. Sci. Forum, 2014, vol. 783, pp. 1863–66.

    Article  CAS  Google Scholar 

  9. 9.

    N.R. Calderon, M. Martinez-escandell, J. Narciso, and F. Rodriguez-reinoso: J. Am. Ceram. Soc., 2010, vol. 93, pp. 1003–09.

    CAS  Article  Google Scholar 

  10. 10.

    N.R. Calderon, M. Martinez-escandell, J. Narciso, and F. Rodriguez-Reinoso: Carbon, 2009, vol. 47, pp. 2200–10.

    CAS  Article  Google Scholar 

  11. 11.

    O. Dezellus, S. Jacques, F. Hodaj, and N. Eustathopoulos: J. Mater. Sci., 2005, vol. 40, pp. 2307–11.

    CAS  Article  Google Scholar 

  12. 12.

    R. Voytovych, V. Bougiouri, N.R. Calderon, J. Narciso, and N. Eustathopoulos: Acta Mater., 2008, vol. 56, pp. 2237–46.

    CAS  Article  Google Scholar 

  13. 13.

    M. Caccia, C. Xiang, J. Narciso, and N. Gupta: Ceram. Int., 2018, vol. 44, pp. 13182–90.

    CAS  Article  Google Scholar 

  14. 14.

    O.C. Esteban, M. Caccia, A. Camarano, and J. Narciso: Ceramic Transactions, John Wiley & Sons, New York, NY, 2017.

    Google Scholar 

  15. 15.

    A. Camarano, M. Caccia, J.M. Molina, and J. Narciso: Ceram. Int., 2016, vol. 42, pp. 10726–10733.

    Article  CAS  Google Scholar 

  16. 16.

    Y. Tong, S. Bai, X. Liang, Q.H. Qin, and J. Zhai: Ceram. Int., 2016, vol. 42, pp. 17174–17178.

    CAS  Article  Google Scholar 

  17. 17.

    A. Ortona, T. Fend, H.W. Yu, K. Raju, and D.H. Yoon: J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1131–38.

    CAS  Article  Google Scholar 

  18. 18.

    S.T. Mileiko: Compr. Compos. Mater., 2000, vol. 4 pp. 265–87.

    Article  Google Scholar 

  19. 19.

    D. Kopeliovich: Adv. Ceram. Matrix Comp., 2014, vol. 5, pp. 79–108.

    Article  CAS  Google Scholar 

  20. 20.

    M.H. Hon and R.F. Davis: J. Mater. Sci., 1979, vol. 14, pp. 2411–21.

    CAS  Article  Google Scholar 

  21. 21.

    P. Eveno, J. Li, A.M. Huntz, and J. Chaumont: Mater. Sci. Eng. B, 1992, vol. 11, pp. 331–36.

    Article  Google Scholar 

  22. 22.

    J.F. White, L. Ma, K. Forwald, and D. Sichen: Metall. Mater. Trans. B, 2013, vol. 45B, pp. 150–60.

    Google Scholar 

  23. 23.

    G.S. Corman and K.L. Luthra: in Handbook of Ceramic Composites, N.P. Bansal, ed., Springer, Boston, MA, 2005, pp. 99–115.

  24. 24.

    A.A. Galiguzov, A.M. Kenigfest, A.P. Malakho, A.N. Seleznev, and V.V. Avdeev: Fibre Chem., 2012, vol. 44, pp. 101–05.

    CAS  Article  Google Scholar 

  25. 25.

    B. Drevet and N. Eustathopoulos: J. Mater. Sci., 2012, vol. 47, pp. 8247–60.

    CAS  Article  Google Scholar 

  26. 26.

    J.F. Narciso-Romero and R. Arpón-Carballo: J. Ceram. Soc. Jpn., 2000, vol. 108, pp. 957–59.

    CAS  Article  Google Scholar 

  27. 27.

    D.Y. Oh, H.C. Kim, J.K. Yoon, I. Ko, and I.J. Shon: J. Alloys Compd., 2005, vol. 395, pp. 174–80.

    CAS  Article  Google Scholar 

  28. 28.

    T. Tsunoura, K. Yoshida, T. Yano, T. Aoki, and T. Ogasawara: J. Am. Ceram. Soc., 2019, pp. 1–13.

    Google Scholar 

  29. 29.

    A. Camarano, M. Caccia, J.M. Molina, and J. Narciso: Ceram. Int., 2016, vol. 42, pp. 10726–10733.

    CAS  Article  Google Scholar 

  30. 30.

    M.A. Nicolet and S.S. Lau: VLSJ Electronics: Microstructure Science, N.G. Einspruch and G.B. Larrabee, eds., Academic Press, New York, NY, 1983, vol. 6.

  31. 31.

    L. Krusin-Elbaum, J.Y.C. Sun, and C. Yu Ting: IEEE Trans. Elect. Dev., 1987, vol. 34, pp. 58–63.

    Article  Google Scholar 

  32. 32.

    R. Novakovic, D. Giuranno, M. Caccia, S. Amore, R. Nowak, N. Sobczak, J. Narciso, and E. Ricci: J. Mol. Liq., 2016, vol. 221, pp. 346–53.

    CAS  Article  Google Scholar 

  33. 33.

    M. Caccia, S. Amore, D. Giuranno, R. Novakovic, E. Ricci, and J. Narciso: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 4099–4106.

    CAS  Article  Google Scholar 

  34. 34.

    B.J. Keene: Surf. Int. Anal., 1987, vol. 10, pp. 367–83.

    CAS  Article  Google Scholar 

  35. 35.

    V.L. Yupko and G. Gnesin: Sov. Powder Metall. Met. Ceram., 1974, vol. 13, pp. 59–61.

    Article  Google Scholar 

  36. 36.

    D. Giuranno, N. Sobczac, G. Bruzda, R. Nowak, W. Polkowski, A. Kudyba, A. Polkowska, and R. Novakovic: J. Mater. Eng. Perform., 2019.

    Article  CAS  Google Scholar 

  37. 37.

    N. Eustathopoulos, N. Sobczak, A. Passerone, and K. Nogi: J. Mater. Sci., 2005, vol. 40, pp. 2271–80.

    CAS  Article  Google Scholar 

  38. 38.

    T.B. Massalski: Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1986, vols. 1–2.

    Google Scholar 

  39. 39.

    D. Giuranno, S. Delsante, G. Borzone, and R. Novakovic: J. Alloys Compd., 2016, vol. 689, pp. 918–30.

    CAS  Article  Google Scholar 

  40. 40.

    M. Naikadea, B. Fankhänel, L. Weber, A. Ortona, M. Stelter, and T. Graule: J. Eur. Ceram. Soc., 2019, vol. 39, pp. 735–42.

    Article  CAS  Google Scholar 

  41. 41.

    L. Liggieri and A. Passerone: High Technol., 1989, vol. 7, pp. 80–86.

    Google Scholar 

  42. 42.

    N. Sobczak, R. Nowak, W. Radziwill, J. Budzioch, and A. Glenz: Mater. Sci. Eng. A, 2008, vol. 495, pp. 43–49.

    Article  CAS  Google Scholar 

  43. 43.

    O. Knacke, O. Kubashewski, and K. Hesselmann: Thermochemical Properties of Inorganic Substances, 2nd ed., Springer Verlag, Düsseldorf, 1991.

    Google Scholar 

  44. 44.

    D. Giuranno, F. Gnecco, E. Ricci, and R. Novakovic: Intermetallics, 2003, vol. 11, pp. 1313–17.

    CAS  Article  Google Scholar 

  45. 45.

    R. Novakovic, E. Ricci, D. Giuranno, T. Lanata, and S. Amore: Calphad: Comput. Coupl. Phase Diagr. Thermochem., 2009, vol. 33, pp. 69–75.

    CAS  Article  Google Scholar 

  46. 46.

    D. Giuranno, A. Tuissi, R. Novakovic, and E. Ricci: J. Chem. Eng. Data, 2010, vol. 55, pp. 3024–28.

    CAS  Article  Google Scholar 

  47. 47.

    E. Ricci, S. Amore, D. Giuranno, R. Novakovic, A. Tuissi, N. Sobczak, R. Nowak, B. Korpala, and G. Bruzda: J. Chem. Phys., 2014, vol. 140 (214704), pp. 1–6.

    Google Scholar 

  48. 48.

    R. Novakovic, D. Giuranno, E. Ricci, A. Tuissi, R. Wunderlich, H.-J. Fecht, and I. Egry: App. Surf. Sci., 2012, vol. 258, pp. 3269–75.

    CAS  Article  Google Scholar 

  49. 49.

    J. Brillo, G. Lauletta, L. Vaianella, E. Arato, D. Giuranno, R. Novakovic, and E. Ricci: ISIJ Int., 2014, vol. 54, pp. 2115–19.

    CAS  Article  Google Scholar 

  50. 50.

    R. Novakovic, E. Ricci, D. Giuranno, and A. Passerone: Surf. Sci., 2005, vol. 576, pp. 175–87.

    CAS  Article  Google Scholar 

  51. 51.

    B. Drevet and N. Eustathopoulos: J. Mater. Sci., 2012, vol. 47, pp. 8247–60.

    CAS  Article  Google Scholar 

  52. 52.

    J.J Biernacki and G.P. Wotzak: J. Am. Ceram. Soc., 1989, vol. 72, pp. 122–29.

    CAS  Article  Google Scholar 

  53. 53.

    G.W. Liu, M.L. Muolo, F. Valenza, and A. Passerndone: Ceram. Int., 2010, vol. 36, pp. 1177–88.

    CAS  Article  Google Scholar 

  54. 54.

    O. Dezellus, F. Hodaj, and N. Eustathopoulos: Acta Mater., 2002, vol. 50, pp. 4741–53.

    CAS  Article  Google Scholar 

  55. 55.

    R. Voytovych, R. Israel, N. Calderon, F. Hodaj, and N. Eustathopoulos: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 3825–35.

    CAS  Article  Google Scholar 

  56. 56.

    D. Bandyopadhyay: J. Phase Equil. Diff., 2004, vol. 25, pp. 415-20.

    CAS  Article  Google Scholar 

  57. 57.

    D. Giuranno, E. Ricci, E. Arato, and P. Costa: Acta Mater., 2006, vol. 54, pp. 2625–30.

    CAS  Article  Google Scholar 

  58. 58.

    D. Giuranno, E. Arato, and E. Ricci: Chem. Eng. Trans., 2001, vol. 24, pp. 571–76.

    Google Scholar 

  59. 59.

    M. Ratto, E. Ricci, and E. Arato: J. Cryst. Growth, 2000, vol. 217, pp. 233–49.

    CAS  Article  Google Scholar 

  60. 60.

    T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1993.

    Google Scholar 

  61. 61.

    W. Polkowski, N. Sobczak, G. Bruzda, R. Nowak, D. Giuranno, A. Kudyba, A. Polkowska, K. Pajor, T. Kozieł, and I. Kaban: J. Mater. Eng. Perform., 2019, vol. 28, pp. 3819–25.

    CAS  Article  Google Scholar 

  62. 62.

    N. Eustathopoulos and B. Drevet: J. Cryst. Growth, 2013, vol. 371, pp. 77–83.

    CAS  Article  Google Scholar 

Download references


The authors thank the National Science Centre (Poland) for the financial support through POLONEZ Project No. UMO-2016/23/P/ST8/01916. This project was carried out under the POLONEZ-3 program, which received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant Agreement No. 665778.


Author information



Corresponding author

Correspondence to Donatella Giuranno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 12, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giuranno, D., Sobczak, N., Bruzda, G. et al. Wetting and Spreading Behavior of Liquid Si-Ti Eutectic Alloy in Contact with Glassy Carbon and SiC at T = 1450 °C. Metall Mater Trans A 50, 4814–4826 (2019). https://doi.org/10.1007/s11661-019-05382-y

Download citation