Metallurgical and Materials Transactions A

, Volume 50, Issue 10, pp 4814–4826 | Cite as

Wetting and Spreading Behavior of Liquid Si-Ti Eutectic Alloy in Contact with Glassy Carbon and SiC at T = 1450 °C

  • Donatella GiurannoEmail author
  • Natalia Sobczak
  • Grzegorz Bruzda
  • Rafal Nowak
  • Wojciech Polkowski
  • Artur Kudyba
  • Adelajda Polkowska
  • Rada Novakovic


The contact heating (CH) sessile drop and capillary purification (CP) methods were applied for a fundamental study concerning the wettability and reactivity of liquid Si-16.2 at. pct Ti alloy (eutectic composition) in contact with glassy carbon (GC) and SiC at T = 1450 °C under an Ar atmosphere. Different spreading stages with different slopes, depending on the starting conditions of the materials used, where observed. On the contrary, the final contact angle value seemed not affected and the values of θ ≈ 44 deg ± 2 and θ ≈ 42 deg ± 2 where displayed on GC and SiC, respectively. The solidified Si-Ti eutectics/GC and Si-Ti eutectics/SiC samples were examined both at the top of the drop and at the cross section by scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS). The presence of a SiC layer as unique reaction product at the Si-Ti eutectics/GC interface, confirmed that wettability is mainly driven by reactivity. Contrarily, as nonreactive system, at the Si-Ti eutectics/SiC interface a weak dissolution of SiC substrate was detected.



The authors thank the National Science Centre (Poland) for the financial support through POLONEZ Project No. UMO-2016/23/P/ST8/01916. This project was carried out under the POLONEZ-3 program, which received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant Agreement No. 665778.


  1. 1.
    D.B. Miracle: Aeronautical applications of metal-matrix composites, S.D. Henry et al., eds., ASM Handbook, ASM International, Materials Park, OH, 2001.Google Scholar
  2. 2.
    X. Zhang, Y. Chen, and J. Hu: Progr. Aero. Sci., 2018, vol. 97, pp. 22–34.Google Scholar
  3. 3.
    H. Singh, S.J. Nrip, and A.K. Tyagi: J. Eng. Res. Stud., 2011, vol. 2, pp. 72–78.Google Scholar
  4. 4.
    Ž. Gnjidić, D. Božić, and M. Mitkov: Mater. Charact., 2001, vol. 47, pp. 129–38.Google Scholar
  5. 5.
    J.N. Ness and T.F. Page: J. Mater. Sci., 1986, vol. 21, pp. 1377–97.Google Scholar
  6. 6.
    A.J. Whitehead and T.F. Page: J. Mater. Sci., 1992, vol. 27, pp. 839–52.Google Scholar
  7. 7.
    M. Caccia and J. Narciso: Ceram. Trans., 2015, vol. 245, pp. 15–252.Google Scholar
  8. 8.
    M. Caccia and J. Narciso: Mater. Sci. Forum, 2014, vol. 783, pp. 1863–66.Google Scholar
  9. 9.
    N.R. Calderon, M. Martinez-escandell, J. Narciso, and F. Rodriguez-reinoso: J. Am. Ceram. Soc., 2010, vol. 93, pp. 1003–09.Google Scholar
  10. 10.
    N.R. Calderon, M. Martinez-escandell, J. Narciso, and F. Rodriguez-Reinoso: Carbon, 2009, vol. 47, pp. 2200–10.Google Scholar
  11. 11.
    O. Dezellus, S. Jacques, F. Hodaj, and N. Eustathopoulos: J. Mater. Sci., 2005, vol. 40, pp. 2307–11.Google Scholar
  12. 12.
    R. Voytovych, V. Bougiouri, N.R. Calderon, J. Narciso, and N. Eustathopoulos: Acta Mater., 2008, vol. 56, pp. 2237–46.Google Scholar
  13. 13.
    M. Caccia, C. Xiang, J. Narciso, and N. Gupta: Ceram. Int., 2018, vol. 44, pp. 13182–90.Google Scholar
  14. 14.
    O.C. Esteban, M. Caccia, A. Camarano, and J. Narciso: Ceramic Transactions, John Wiley & Sons, New York, NY, 2017.Google Scholar
  15. 15.
    A. Camarano, M. Caccia, J.M. Molina, and J. Narciso: Ceram. Int., 2016, vol. 42, pp. 10726–10733.Google Scholar
  16. 16.
    Y. Tong, S. Bai, X. Liang, Q.H. Qin, and J. Zhai: Ceram. Int., 2016, vol. 42, pp. 17174–17178.Google Scholar
  17. 17.
    A. Ortona, T. Fend, H.W. Yu, K. Raju, and D.H. Yoon: J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1131–38.Google Scholar
  18. 18.
    S.T. Mileiko: Compr. Compos. Mater., 2000, vol. 4 pp. 265–87.Google Scholar
  19. 19.
    D. Kopeliovich: Adv. Ceram. Matrix Comp., 2014, vol. 5, pp. 79–108.Google Scholar
  20. 20.
    M.H. Hon and R.F. Davis: J. Mater. Sci., 1979, vol. 14, pp. 2411–21.Google Scholar
  21. 21.
    P. Eveno, J. Li, A.M. Huntz, and J. Chaumont: Mater. Sci. Eng. B, 1992, vol. 11, pp. 331–36.Google Scholar
  22. 22.
    J.F. White, L. Ma, K. Forwald, and D. Sichen: Metall. Mater. Trans. B, 2013, vol. 45B, pp. 150–60.Google Scholar
  23. 23.
    G.S. Corman and K.L. Luthra: in Handbook of Ceramic Composites, N.P. Bansal, ed., Springer, Boston, MA, 2005, pp. 99–115.Google Scholar
  24. 24.
    A.A. Galiguzov, A.M. Kenigfest, A.P. Malakho, A.N. Seleznev, and V.V. Avdeev: Fibre Chem., 2012, vol. 44, pp. 101–05.Google Scholar
  25. 25.
    B. Drevet and N. Eustathopoulos: J. Mater. Sci., 2012, vol. 47, pp. 8247–60.Google Scholar
  26. 26.
    J.F. Narciso-Romero and R. Arpón-Carballo: J. Ceram. Soc. Jpn., 2000, vol. 108, pp. 957–59.Google Scholar
  27. 27.
    D.Y. Oh, H.C. Kim, J.K. Yoon, I. Ko, and I.J. Shon: J. Alloys Compd., 2005, vol. 395, pp. 174–80.Google Scholar
  28. 28.
    T. Tsunoura, K. Yoshida, T. Yano, T. Aoki, and T. Ogasawara: J. Am. Ceram. Soc., 2019, pp. 1–13.Google Scholar
  29. 29.
    A. Camarano, M. Caccia, J.M. Molina, and J. Narciso: Ceram. Int., 2016, vol. 42, pp. 10726–10733.Google Scholar
  30. 30.
    M.A. Nicolet and S.S. Lau: VLSJ Electronics: Microstructure Science, N.G. Einspruch and G.B. Larrabee, eds., Academic Press, New York, NY, 1983, vol. 6.Google Scholar
  31. 31.
    L. Krusin-Elbaum, J.Y.C. Sun, and C. Yu Ting: IEEE Trans. Elect. Dev., 1987, vol. 34, pp. 58–63.Google Scholar
  32. 32.
    R. Novakovic, D. Giuranno, M. Caccia, S. Amore, R. Nowak, N. Sobczak, J. Narciso, and E. Ricci: J. Mol. Liq., 2016, vol. 221, pp. 346–53.Google Scholar
  33. 33.
    M. Caccia, S. Amore, D. Giuranno, R. Novakovic, E. Ricci, and J. Narciso: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 4099–4106.Google Scholar
  34. 34.
    B.J. Keene: Surf. Int. Anal., 1987, vol. 10, pp. 367–83.Google Scholar
  35. 35.
    V.L. Yupko and G. Gnesin: Sov. Powder Metall. Met. Ceram., 1974, vol. 13, pp. 59–61.Google Scholar
  36. 36.
    D. Giuranno, N. Sobczac, G. Bruzda, R. Nowak, W. Polkowski, A. Kudyba, A. Polkowska, and R. Novakovic: J. Mater. Eng. Perform., 2019.Google Scholar
  37. 37.
    N. Eustathopoulos, N. Sobczak, A. Passerone, and K. Nogi: J. Mater. Sci., 2005, vol. 40, pp. 2271–80.Google Scholar
  38. 38.
    T.B. Massalski: Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1986, vols. 1–2.Google Scholar
  39. 39.
    D. Giuranno, S. Delsante, G. Borzone, and R. Novakovic: J. Alloys Compd., 2016, vol. 689, pp. 918–30.Google Scholar
  40. 40.
    M. Naikadea, B. Fankhänel, L. Weber, A. Ortona, M. Stelter, and T. Graule: J. Eur. Ceram. Soc., 2019, vol. 39, pp. 735–42.Google Scholar
  41. 41.
    L. Liggieri and A. Passerone: High Technol., 1989, vol. 7, pp. 80–86.Google Scholar
  42. 42.
    N. Sobczak, R. Nowak, W. Radziwill, J. Budzioch, and A. Glenz: Mater. Sci. Eng. A, 2008, vol. 495, pp. 43–49.Google Scholar
  43. 43.
    O. Knacke, O. Kubashewski, and K. Hesselmann: Thermochemical Properties of Inorganic Substances, 2nd ed., Springer Verlag, Düsseldorf, 1991.Google Scholar
  44. 44.
    D. Giuranno, F. Gnecco, E. Ricci, and R. Novakovic: Intermetallics, 2003, vol. 11, pp. 1313–17.Google Scholar
  45. 45.
    R. Novakovic, E. Ricci, D. Giuranno, T. Lanata, and S. Amore: Calphad: Comput. Coupl. Phase Diagr. Thermochem., 2009, vol. 33, pp. 69–75.Google Scholar
  46. 46.
    D. Giuranno, A. Tuissi, R. Novakovic, and E. Ricci: J. Chem. Eng. Data, 2010, vol. 55, pp. 3024–28.Google Scholar
  47. 47.
    E. Ricci, S. Amore, D. Giuranno, R. Novakovic, A. Tuissi, N. Sobczak, R. Nowak, B. Korpala, and G. Bruzda: J. Chem. Phys., 2014, vol. 140 (214704), pp. 1–6.Google Scholar
  48. 48.
    R. Novakovic, D. Giuranno, E. Ricci, A. Tuissi, R. Wunderlich, H.-J. Fecht, and I. Egry: App. Surf. Sci., 2012, vol. 258, pp. 3269–75.Google Scholar
  49. 49.
    J. Brillo, G. Lauletta, L. Vaianella, E. Arato, D. Giuranno, R. Novakovic, and E. Ricci: ISIJ Int., 2014, vol. 54, pp. 2115–19.Google Scholar
  50. 50.
    R. Novakovic, E. Ricci, D. Giuranno, and A. Passerone: Surf. Sci., 2005, vol. 576, pp. 175–87.Google Scholar
  51. 51.
    B. Drevet and N. Eustathopoulos: J. Mater. Sci., 2012, vol. 47, pp. 8247–60.Google Scholar
  52. 52.
    J.J Biernacki and G.P. Wotzak: J. Am. Ceram. Soc., 1989, vol. 72, pp. 122–29.Google Scholar
  53. 53.
    G.W. Liu, M.L. Muolo, F. Valenza, and A. Passerndone: Ceram. Int., 2010, vol. 36, pp. 1177–88.Google Scholar
  54. 54.
    O. Dezellus, F. Hodaj, and N. Eustathopoulos: Acta Mater., 2002, vol. 50, pp. 4741–53.Google Scholar
  55. 55.
    R. Voytovych, R. Israel, N. Calderon, F. Hodaj, and N. Eustathopoulos: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 3825–35.Google Scholar
  56. 56.
    D. Bandyopadhyay: J. Phase Equil. Diff., 2004, vol. 25, pp. 415-20.Google Scholar
  57. 57.
    D. Giuranno, E. Ricci, E. Arato, and P. Costa: Acta Mater., 2006, vol. 54, pp. 2625–30.Google Scholar
  58. 58.
    D. Giuranno, E. Arato, and E. Ricci: Chem. Eng. Trans., 2001, vol. 24, pp. 571–76.Google Scholar
  59. 59.
    M. Ratto, E. Ricci, and E. Arato: J. Cryst. Growth, 2000, vol. 217, pp. 233–49.Google Scholar
  60. 60.
    T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1993.Google Scholar
  61. 61.
    W. Polkowski, N. Sobczak, G. Bruzda, R. Nowak, D. Giuranno, A. Kudyba, A. Polkowska, K. Pajor, T. Kozieł, and I. Kaban: J. Mater. Eng. Perform., 2019, vol. 28, pp. 3819–25.Google Scholar
  62. 62.
    N. Eustathopoulos and B. Drevet: J. Cryst. Growth, 2013, vol. 371, pp. 77–83.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.National Research Council of Italy-Institute of Condensed Matter Chemistry and Technologies for EnergyGenovaItaly
  2. 2.Foundry Research InstituteKrakowPoland

Personalised recommendations